Difference between revisions of "BSc: IntroductionToComputerVision"
(Created page with "= <span style="color:red;">Название дисциплины</span> = : '''Квалификация выпускника''': <span style="color:red;">бакалавр/ма...") |
V.matiukhin (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | = Компьютерное зрение и обработка видео = |
||
− | = <span style="color:red;">Название дисциплины</span> = |
||
− | : '''Квалификация выпускника''': |
+ | : '''Квалификация выпускника''': бакалавр |
− | : '''Направление подготовки''': |
+ | : '''Направление подготовки''': 09.03.01 - “Информатика и вычислительная техника” |
− | : '''Направленность (профиль) образовательной программы''': |
+ | : '''Направленность (профиль) образовательной программы''': Математические основы ИИ |
− | : '''Программу разработал(а)''': |
+ | : '''Программу разработал(а)''': Д.С. Ватолин |
== 1. Краткая характеристика дисциплины == |
== 1. Краткая характеристика дисциплины == |
||
− | Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области |
+ | : Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области компьютерного зрения и обработки видео, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают основы и продвинутые методы компьютерного зрения и обработки видео: применение сверточных фильтров в задачах обнаружения границ, сжатие видео, основы 4D-видео, реконструкция 3D-сцен, задачи трекинга и предсказания областей внимания (салиентных областей), а также состязательные атаки на метрики качества изображений/видео и методы защиты от них. |
== 2. Перечень планируемых результатов обучения == |
== 2. Перечень планируемых результатов обучения == |
||
+ | : '''Целью освоения дисциплины''' является формирование у студентов глубоких знаний и практических навыков в области анализа, обработки и интерпретации изображений и видео с применением методов машинного и глубокого обучения. Помимо теоретических аспектов, курс акцентирует внимание на разработке и применении изученных алгоритмов с использованием современных программных инструментов и библиотек в практических заданиях, что позволяет студентам применить полученные знания на практике и получить опыт в решении актуальных задач в области компьютерного зрения и обработки видео. |
||
− | : '''Целью освоения дисциплины''' ... |
||
+ | : '''Задачами дисциплины''' являются: |
||
− | : '''Задачами дисциплины''' вляются ... <span style="color:red;">(перечислить задачи дисциплины, например: изучение принципов организации подсистем обработки естественного языка для различных прикладных задач и тенденций развития лингвистических ресурсов в сфере интеллектуальных информационных технологий и т.д.).</span> |
||
+ | *освоение принципов и практик компьютерного зрения и обработки изображений и видео с использованием классических алгоритмов, машинного и глубокого обучения; |
||
+ | *изучение математических основ наиболее важных алгоритмов компьютерного зрения; |
||
+ | *изучение областей и условий применимости алгоритмов компьютерного зрения и обработки видео; |
||
+ | *применение изученных алгоритмов в практическом решении задач компьютерного зрения и обработки видео. |
||
=== Общая характеристика результата обучения по дисциплине === |
=== Общая характеристика результата обучения по дисциплине === |
||
− | : '''Знания:''' |
+ | : '''Знания:''' обучающийся получил систематические знания в следующих областях:<br> |
+ | #Основы компьютерного зрения и обработки изображений: понимание принципов работы с изображениями и видео, включая их сжатие, восстановление, классификацию и сегментацию. |
||
− | <span style="color:red;">(информация, которой обладает обучающийся в определенных областях, полученная в процессе обучения, то есть это информация для осуществления какой-либо деятельности (действия))</span> |
||
+ | #Методы машинного обучения и глубокого обучения: знание алгоритмов и моделей, применяемых для распознавания образов, включая свёрточные нейронные сети. |
||
+ | #Алгоритмы детекции границ и объектов: понимание методов поиска границ, линий и объектов на изображениях, включая преобразование Хафа и метод RANSAC. |
||
+ | #Методы калибровки камеры, перспективные преобразования изображений. |
||
+ | #Принципы создания панорам и 3D-реконструкции: освоение методов сшивки изображений (стичинг) и построения трехмерных моделей сцен. |
||
+ | #Методы (метрики) оценки качества изображений и видео. Область их применения, методы состязательных атак на метрики качества и методы защиты от атак. |
||
+ | #Концепция карты внимания (салиентности) в контексте визуального восприятия и обработки изображений. |
||
+ | #Основы 4D видео. |
||
+ | #Теоретические основы задач классификации и детекции, принципы работы Vision Transformer (ViT) и DETR (Detection Transformer). |
||
− | : '''Умения:''' |
+ | : '''Умения:''' обучающийся развил умения в следующих направлениях:<br> |
+ | #Применение алгоритмов и техник обработки изображений для решения конкретных задач компьютерного зрения с использованием Python. |
||
− | <span style="color:red;">(предполагает целенаправленное выполнение действий, по изученной информации)</span> |
||
+ | #Выбор корректного алгоритма компьютерного зрения для решения рассмотренных задач компьютерного зрения. |
||
+ | #Использование методов машинного и глубокого обучения для распознавания образов, включая настройку и обучение нейросетей. |
||
+ | #Реализация алгоритмов детекции границ и объектов для извлечения полезной информации из изображений. |
||
+ | #Осуществление процесса калибровки камеры и коррекции дисторсии изображений. |
||
+ | #Создание панорам и выполнение 3D-реконструкции сцен на основе набора изображений. |
||
+ | #Реализация алгоритмов плотной 3D реконструкции и методов Structure from Motion (SfM). |
||
+ | #Анализ и применение стратегий для защиты от атак на метрики качества изображений и видео. |
||
+ | #Разработка и реализация алгоритмов трекинга и предсказания движения объектов. |
||
+ | #Использование техник выделения салиентных областей на изображениях для улучшения анализа и обработки. |
||
+ | #Применение Vision Transformer и DETR для решения задач классификации и детекции объектов. |
||
− | : '''Навыки (владения):''' |
+ | : '''Навыки (владения):''' обучающийся овладел следующими навыками:<br> |
+ | #Программирование на Python для реализации алгоритмов компьютерного зрения и обработки изображений. |
||
− | <span style="color:red;">(автоматизированные устойчивые умения выполнять определенную работу, то есть действие выполняется без контроля сознания, автоматически)</span> |
||
+ | #Работа с библиотекой OpenCV и другими инструментами для анализа и обработки изображений и видео. |
||
+ | #Применение предварительно обученных моделей глубокого обучения для распознавания лиц, текста и объектов на изображениях. |
||
== 3. Структура и содержание дисциплины == |
== 3. Структура и содержание дисциплины == |
||
− | <span style="color:red;">(Указываются: 1) порядковый номер раздела (количество разделов зависит от содержания Вашей дисциплины); 2) наименования разделов дисциплины; 3) темы указанных разделов (количество тем в каждом разделе зависит от содержания Вашей дисциплины)</span> |
||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
− | | style="width: |
+ | | style="width:5%" | №<br>п/п |
| style="width:30%" | Наименование раздела <br> дисциплины |
| style="width:30%" | Наименование раздела <br> дисциплины |
||
− | | style="width: |
+ | | style="width:65%" | Содержание дисциплины по темам |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 1. || Введение в компьютерное зрение |
||
− | | style="text-align:center;" | 1. || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | * Основные задачи компьютерного зрения |
||
+ | **Задача классификации |
||
+ | **Задача детекции объектов |
||
+ | **Задача детекции ключевых точек |
||
+ | **Semantic segmentation |
||
+ | **Instance segmentation |
||
+ | **Panoptic segmentation |
||
+ | **Image captioning |
||
+ | **Задача предсказания глубины |
||
+ | **Задача трекинга объектов |
||
+ | **Задача повышения разрешения |
||
+ | **Inpainting |
||
+ | **Задача генерации изображений |
||
+ | **Задача переноса стиля |
||
+ | *Что такое изображение |
||
+ | **Особенности человеческой визуальной системы |
||
+ | **Особенности машинного представления изображения |
||
+ | |||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 2. || Свертки, алгоритмы детекции границ |
||
− | | style="text-align:center;" | 2. || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | *Математические основы операции свертки |
||
+ | *Примеры использования сверток в обработке изображений |
||
+ | *Детектирование объектов и границ: методы и алгоритмы |
||
+ | *Реализация сверток и операторов для обработки изображений |
||
+ | |||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 3. ||Нейросетевая обработка видео |
||
− | | style="text-align:center;" | 3. || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | *Устройство глаза, восприятие цвета |
||
+ | *Цветовые пространства |
||
+ | *Устройство камеры |
||
+ | **Объектив камеры |
||
+ | **Виды сенсоров |
||
+ | **Типичные артефакты съемки |
||
+ | *Обработка изображений в камере |
||
+ | **Обработка RAW-кадра |
||
+ | **Демозаикинг |
||
+ | **Шумоподавление |
||
+ | **Цветокоррекция |
||
+ | **Тональная компрессия |
||
+ | |||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 4. || Методы сжатия данных |
||
− | | style="text-align:center;" | 4. || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | * Основы сжатия данных без потерь и с потерями |
||
+ | **Определение энтропии источника |
||
+ | **Сжатие Хаффмана |
||
+ | **Арифметическое сжатие |
||
+ | **PPM |
||
+ | **Рекуррентные нейросети в задаче сжатия |
||
+ | *Сжатие изображений |
||
+ | **JPEG |
||
+ | **JPEG 2000 |
||
+ | *Нейросетевое сжатие |
||
+ | **JPEG AI |
||
+ | **Артефакты нейросетевого сжатия |
||
+ | *Стандарты видеокодеков |
||
+ | **Компенсация движения |
||
+ | **BSQ-rate |
||
+ | |||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 5. ||Введение в реконструкцию 3D-сцен |
||
− | | style="text-align:center;" | 5. || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | *Преобразование Хафа |
||
+ | *Линейные преобразования изображений |
||
+ | *Перспективные преобразования изображений |
||
+ | *RANSAC |
||
+ | *Реконструкция 3D-сцены |
||
+ | **SfM (Structure from motion) |
||
+ | **VO (Visual odometry) |
||
+ | *Калибровка камеры |
||
+ | |||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 6. || Реконструкция 3D-сцены |
||
− | | style="text-align:center;" | ... || || -<br> -<br> -<br> -<br> |
||
+ | | |
||
+ | *Модели камеры |
||
+ | **Модель рыбьего глаза |
||
+ | **Камера-обскура |
||
+ | **Стеноп (пинхол камера) |
||
+ | *Внутренние (intrinsic) и внешние (extrinsic) парметры камеры |
||
+ | *Радиальная дисторция |
||
+ | *Распознавание ключевых точек |
||
+ | **Детекция углов (Детектор Харриса) |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 7. || Атаки на методы оценки визуального качества изображений/видео |
||
+ | | |
||
+ | *Введение в состязательные атаки |
||
+ | *Состязательные атаки методами черного ящика |
||
+ | *Состязательные атаки методами белого ящика |
||
+ | *Бенчмарк устойчивости метрик |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 8. || Методы защиты от атак на методы оценки визуального качества изображений/видео |
||
+ | | |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 9. || Задача трекинга, предсказание движения |
||
+ | | |
||
+ | *Постановка задачи трекинга |
||
+ | *Single object tracking |
||
+ | *Online tracking |
||
+ | **SORT |
||
+ | **DeepSORT |
||
+ | **Trackformer |
||
+ | **CenterTrack |
||
+ | **PermaTrack |
||
+ | *Motion prediction |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 10. ||4D-видео |
||
+ | | |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 11. || Карты внимания (салиентность) |
||
+ | | |
||
+ | *Постановка задачи предсказания карт внимания |
||
+ | *Применение в индустрии |
||
+ | *Метрики качества |
||
+ | *Обзор методов для изображений |
||
+ | **Center Prior |
||
+ | **MSI-Net |
||
+ | *Обзор методов для видео |
||
+ | **TASED-Net |
||
+ | **UNISAL |
||
+ | **VINet |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 12. || Архитектура трансформера в задачах компьютерного зрения. ViT и DETR |
||
+ | | |
||
+ | *Теоретические основы архитектуры Трансформер |
||
+ | *Архитектура ViT |
||
+ | *Архитектура DETR |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 13. || Компьютерное зрение в автономном вождении |
||
+ | | |
||
+ | |||
+ | |- style="background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 14. || Мультимодальные модели в компьютерном зрении |
||
+ | | |
||
+ | *Задача OCR |
||
+ | *Задача Image Captioning |
||
|} |
|} |
||
Line 48: | Line 206: | ||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
− | | style="width: |
+ | | style="width:5%" | №<br>п/п |
| style="width:30%" | Наименование раздела<br>дисциплины (модуля) |
| style="width:30%" | Наименование раздела<br>дисциплины (модуля) |
||
− | | style="width: |
+ | | style="width:65%" | Перечень рассматриваемых тем (вопросов) |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 1. || |
+ | | style="text-align:center;" | 1. || Свертки, алгоритмы детекции границ |
+ | | |
||
+ | Имплементации свертки с разными паддингами (same, no padding)<br> |
||
+ | Имплементация фильтра Собеля<br> |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. || |
+ | | style="text-align:center;" | 2. || Нейросетевая обработка видео |
+ | | |
||
+ | Реализация RAW Imaging Pipeline |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. || |
+ | | style="text-align:center;" | 3. || Методы сжатия данных |
+ | | |
||
+ | Реализация операций изменения размера с помощью разных python библиотек (проблемы антиалиасинга)<br> |
||
+ | Реализация обучения простой модели обесшумливания<br> |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. || |
+ | | style="text-align:center;" | 4. || Введение в реконструкцию 3D-сцен |
+ | | |
||
+ | Реализация фильтра Кэнни |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. || |
+ | | style="text-align:center;" | 5. || Реконструкция 3D-сцены |
+ | | |
||
+ | Реализация перспективных искажений<br> |
||
+ | Реализация преобразования Хафа<br> |
||
+ | Применение библиотеки opencv для вычисления ключевых точек через SIFT<br> |
||
+ | Реализация мэтчинга точек полным перебором<br> |
||
+ | Расчет матрицы гомографии с помощью RANSAC |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | |
+ | | style="text-align:center;" | 6. || Атаки на методы оценки визуального качества изображений/видео |
+ | | |
||
+ | Реализация нескольких методов атак на методы оценки визуального качества изображений/видео<br> |
||
+ | *FGSM<br> |
||
+ | *UAP |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 4. || Введение в реконструкцию 3D-сцен |
||
+ | | |
||
+ | Реализация фильтра Кэнни |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 7. || Методы защиты от атак на методы оценки визуального качества изображений/видео |
||
+ | | |
||
+ | Подсчет корреляции метрики на чистых данных<br> |
||
+ | Генерация состязательных примеров<br> |
||
+ | Adversarial purification<br> |
||
+ | *Flip<br> |
||
+ | *Resize<br> |
||
+ | *Random crop<br> |
||
+ | *JPEG compression<br> |
||
+ | *Denoising<br> |
||
+ | Реализация состязательного обучения метрики |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 8. || Задача трекинга, предсказание движения |
||
+ | | |
||
+ | Изучение примеров использования обученной модели DETR<br> |
||
+ | Реализация дообучения модели DETR |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 9. || Карты внимания (салиентность) |
||
+ | | |
||
+ | Реализация обучения простой модели предсказания карт внимания |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 10. || Архитектура трансформера в задачах компьютерного зрения. ViT и DETR |
||
+ | | |
||
+ | Реализация простого пайплайна детекции и нахождения объектов |
||
+ | |||
|} |
|} |
||
− | '''Текущий контроль успеваемости обучающихся по дисциплине:''' |
||
+ | '''Текущий контроль успеваемости обучающихся по дисциплине:''' |
||
− | <span style="color:red;">(К формам текущего контроля можно отнести собеседование, коллоквиум, тест, контрольную работу, лабораторную работу, эссе, реферат и иные творческие работы.)</span> |
||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
| style="width:5%" | №<br>п/п |
| style="width:5%" | №<br>п/п |
||
− | | style="width:20%" | Наименование раздела |
+ | | style="width:20%" | Наименование раздела дисциплины |
− | | style="width: |
+ | | style="width:20%" | Форма текущего контроля |
+ | | style="width:55%" | Материалы текущего контроля |
||
− | | style="width:50%" | Материалы текущего контроля<br><br><span style="color:red;">(Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ текущего контроля успеваемости обучающихся по разделам дисциплины подробно в соответствии с требованиями)</span> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
| style="text-align:center;" | 1. |
| style="text-align:center;" | 1. |
||
+ | | Нейросетевая обработка видео |
||
+ | | Проверка выполнения домашних заданий |
||
| |
| |
||
+ | Практическое задание:<br> |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
+ | Реализация и обучение нейронной сети для задачи устранения размытия в видео |
||
− | | Например: |
||
− | Устный / письменный опрос:<br>-<br>-<br>-<br>...<br> |
||
− | Тематика групповых проектов:<br>-<br>-<br>-<br>...<br> |
||
− | Темы докладов:<br>-<br>-<br>-<br>...<br> |
||
− | Тематика эссе:<br>-<br>-<br>-<br>...<br> |
||
− | Задания, в том числе, для групповых проектов:<br>-<br>-<br>-<br>...<br> |
||
− | Тестирование (письменное или компьютерное):<br>-<br>-<br>-<br>...<br><br> |
||
− | Проверка разработки отдельных частей кода программного продукта. |
||
− | Другие формы текущего контроля, используемые Вами на занятиях<br>-<br>-<br>-<br>...<br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
| style="text-align:center;" | 2. |
| style="text-align:center;" | 2. |
||
+ | | Введение в реконструкцию 3D-сцен |
||
− | | |
||
+ | | Проверка выполнения домашних заданий |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
| |
| |
||
+ | Практическое задание:<br> |
||
+ | Создание панорамы |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
| style="text-align:center;" | 3. |
| style="text-align:center;" | 3. |
||
+ | | Атаки на методы оценки визуального качества изображений/видео |
||
− | | |
||
+ | | Проверка выполнения домашних заданий |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
| |
| |
||
+ | Практическое задание:<br> |
||
+ | Реализация нескольких методов атак на методы оценки визуального качества изображений/видео<br> |
||
+ | **FGSM<br> |
||
+ | **UAP |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
| style="text-align:center;" | 4. |
| style="text-align:center;" | 4. |
||
+ | | Методы защиты от атак на методы оценки визуального качества изображений/видео |
||
− | | |
||
+ | | Проверка выполнения домашних заданий |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
| |
| |
||
+ | Практическое задание:<br> |
||
+ | Необходимо реализовать методы защиты метрики Linearity на свое усмотрение. |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
| style="text-align:center;" | 5. |
| style="text-align:center;" | 5. |
||
+ | | Карты внимания (салиентность) |
||
− | | |
||
+ | | Проверка выполнения домашних заданий |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
| |
| |
||
+ | Практическое задание:<br> |
||
+ | Реализация и обучение нейронной сети для задачи предсказания карт внимания |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | . |
+ | | style="text-align:center;" | 6. |
+ | | Архитектура трансформера в задачах компьютерного зрения. ViT и DETR |
||
+ | | Проверка выполнения домашних заданий |
||
+ | | |
||
+ | Практическое задание:<br> |
||
+ | Разработка алгоритма детекции продуктов на полках магазина |
||
+ | |||
|} |
|} |
||
+ | |||
'''Контрольные вопросы для подготовки к промежуточной аттестации:''' |
'''Контрольные вопросы для подготовки к промежуточной аттестации:''' |
||
− | {| class="wikitable" style="width:70%;" |
||
− | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
− | | style="width:10%" | №<br>п/п |
||
− | | style="width:25%" | Наименование <br> раздела дисциплины |
||
− | | style="width:65%" | Вопросы |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 1. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | ... || || |
||
− | |} |
||
− | '''Вопросы/Задания к промежуточной аттестации в устной/письменной форме:''' |
||
+ | Промежуточная аттестация проводится на основе рейтинга, сформированного по результатам текущей аттестации в течение семестра. |
||
− | <span style="color:red;">(Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ для промежуточной аттестации.)</span> |
||
− | 1.<br>2.<br>3.<br>...<br>48.<br>49.<br>50.<br>... |
||
=== Перечень учебно-методического обеспечения дисциплины === |
=== Перечень учебно-методического обеспечения дисциплины === |
||
Список основной литературы: |
Список основной литературы: |
||
+ | *Computer Vision: Algorithms and Applications, 2nd ed. Richard Szeliski, The University of Washington. |
||
+ | *Gonzalez and. Richard E. Woods' Digital Image Processing, Fourth Edition |
||
+ | *Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Cham: Springer International Publishing, 2020. |
||
+ | *Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020). |
||
Список дополнительной литературы: |
Список дополнительной литературы: |
||
+ | *An Introduction to 3D Computer Vision Techniques and Algorithms Boguslaw Cyganek and J. Paul Siebert |
||
− | === Методические указания для обучающихся по освоению дисциплины === |
||
+ | *Computational Photography Mastering New Techniques for Lenses, Lighting, and Sensors Jack Tumblin |
||
− | <span style="color:red;">(Указываются рекомендации для обучающихся, которые раскрывают суть их работы при различных видах деятельности в рамках освоения дисциплины. Данные рекомендации должны охватывать работу с лекционным материалом, подготовку и работу во время проведения семинарских занятий, самостоятельную работу, подготовку к текущему контролю и промежуточной аттестации)</span> |
||
+ | *Ватолин, Д. С. Методы сжатия изображений : учебное пособие / Д. С. Ватолин. — 2-е изд. — Москва : ИНТУИТ, 2016. — 196 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100646 |
||
+ | |||
− | <span style="color:red;">(Выберите соответствующие виды учебных занятий, которые используются при изучении Вашей дисциплины)</span> |
||
+ | === Методические указания для обучающихся по освоению дисциплины === |
||
{| class="wikitable" style="width:80%;" |
{| class="wikitable" style="width:80%;" |
||
− | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:# |
+ | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
| style="width:20%" | Вид учебных<br>занятий/деятельности |
| style="width:20%" | Вид учебных<br>занятий/деятельности |
||
| style="width:80%" | Деятельность обучающегося |
| style="width:80%" | Деятельность обучающегося |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center |
+ | | style="vertical-align:middle; text-align:center;" | Лекция |
− | | style="vertical-align:middle; text-align:left |
+ | | style="vertical-align:middle; text-align:left;" | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Практическое (семинарское) занятие |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его.<br>Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы. |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center |
+ | | style="vertical-align:middle; text-align:center;" | Практическое (семинарское) занятие |
+ | | style="vertical-align:middle; text-align:left;" | При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его.<br>Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы. |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части. |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center |
+ | | style="vertical-align:middle; text-align:center;" | Самостоятельная работа |
+ | | style="vertical-align:middle; text-align:left;" | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Поиск источников и литературы, составление библиографии. При написании реферата рекомендуется использовать разнообразные источники, монографии и статьи из научных журналов, позволяющие глубже разобраться в различных точках зрения на заданную тему. Изучение литературы следует начинать с наиболее общих трудов, затем следует переходить к освоению специализированных исследований по выбранной теме. Могут быть использованы ресурсы сети «Интернет» с соответствующими ссылками на использованные сайты.<br>Если тема содержит проблемный вопрос, следует сформулировать разные точки зрения на него. Рекомендуется в выводах указать свое собственное аргументированное мнение по данной проблеме. Подготовить презентацию для защиты реферата. |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center |
+ | | style="vertical-align:middle; text-align:center;" | Разработка отдельных частей кода |
+ | | style="vertical-align:middle; text-align:left;" | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Написание прозаического сочинения небольшого объема и свободной композиции, выражающего индивидуальные впечатления и соображения по конкретному поводу или вопросу и заведомо не претендующего на определяющую или исчерпывающую трактовку предмета. При работе над эссе следует четко и грамотно формулировать мысли, структурировать информацию, использовать основные понятия, выделять причинно-следственные связи. Как правило эссе имеет следующую структуру: вступление, тезис и аргументация его, заключение. В качестве аргументов могут выступать исторические факты, явления общественной жизни, события, жизненные ситуации и жизненный опыт, научные доказательства, ссылки на мнение ученых и др. |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center |
+ | | style="vertical-align:middle; text-align:center;" | Выполнение домашних заданий и групповых проектов |
+ | | style="vertical-align:middle; text-align:left;" | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к промежуточной аттестации необходимо проработать вопросы по темам, которые рекомендуются для самостоятельной подготовки. При возникновении затруднений с ответами следует ориентироваться на конспекты лекций, семинаров, рекомендуемую литературу, материалы электронных и информационных справочных ресурсов, статей.<br>Если тема вызывает затруднение, четко сформулировать проблемный вопрос и задать его преподавателю. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Практические (лабораторные) занятия |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Самостоятельная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Видеопрезентация |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Подготовка видеопрезентаций по курсу. Видеопрезентации могут быть сделаны на любую тему, затронутую в ходе курса. Темы должны быть заранее согласованы с преподавателем. Видеопрезентации продолжительностью около 5 минут (300 секунд) должны быть подготовлены в группах, определяемых преподавателем. Несмотря на то, что это групповая работа, должен явно присутствовать вклад каждого члена группы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Доклад |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Дискуссия |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Контрольная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Тестирование (устное/письменное) |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Индивидуальная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Разработка отдельных частей кода |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Выполнение домашних заданий и групповых проектов |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
||
|} |
|} |
||
+ | |||
=== Методы и технологии обучения, способствующие формированию компетенции === |
=== Методы и технологии обучения, способствующие формированию компетенции === |
||
− | <span style="color:red;">(Указываются все используемые преподавателем методы и технологии обучения)</span> |
||
{| class="wikitable" |
{| class="wikitable" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
| Методы и технологии обучения, способствующие формированию компетенции |
| Методы и технологии обучения, способствующие формированию компетенции |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | Информационно-коммуникационная технология, проектная технология, технология проблемного обучения, традиционные технологии, модульные технологии, технология интегрированного обучения |
||
− | | |
||
− | |} |
||
− | <span style="color:red;">Например:</span> |
||
− | {| class="wikitable" style="width:80%;" |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center; width:5%;" | 1. |
||
− | | style="width:20%;" | Информационно – коммуникационная технология |
||
− | | style="width:75%;" | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. |
||
− | | Технология развития критического мышления |
||
− | | Основные методические приемы развития критического мышления |
||
− | # Прием «Кластер» |
||
− | # Таблица |
||
− | #Учебно-мозговой штурм |
||
− | #Интеллектуальная разминка |
||
− | #Зигзаг, зигзаг -2 |
||
− | #Прием «Инсерт» |
||
− | #Эссе |
||
− | #Приём «Корзина идей» |
||
− | #Приём «Составление синквейнов» |
||
− | #Метод контрольных вопросов |
||
− | #Приём «Знаю../Хочу узнать…/Узнал…» |
||
− | #Круги по воде |
||
− | #Ролевой проект |
||
− | #Да – нет |
||
− | #Приём «Чтение с остановками» |
||
− | #Приём «Взаимоопрос» |
||
− | #Приём «Перепутанные логические цепочки» |
||
− | #Приём «Перекрёстная дискуссия» |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. |
||
− | | Проектная технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. |
||
− | | Технология проблемного обучения |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. |
||
− | | Кейс – технология |
||
− | | К методам кейс-технологий, активизирующим учебный процесс, относятся: |
||
− | *метод ситуационного анализа (Метод анализа конкретных ситуаций, ситуационные задачи и упражнения; кейс-стадии) |
||
− | *метод инцидента; |
||
− | *метод ситуационно-ролевых игр; |
||
− | *метод разбора деловой корреспонденции; |
||
− | *игровое проектирование; |
||
− | *метод дискуссии. |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 6. |
||
− | | Технология интегрированного обучения |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 7. |
||
− | | Педагогика сотрудничества |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 8. |
||
− | | Технологии уровневой дифференциации |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 9. |
||
− | | Групповая технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 10. |
||
− | | Традиционные технологии (классно-урочная система) |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 11. |
||
− | | Здоровьесберегающие технологии |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 12. |
||
− | | Игровая технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 13. |
||
− | | Модульная технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 14. |
||
− | | Технология мастерских |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | |
||
− | | и др. |
||
− | | |
||
|} |
|} |
Latest revision as of 20:08, 3 April 2024
Компьютерное зрение и обработка видео
- Квалификация выпускника: бакалавр
- Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
- Направленность (профиль) образовательной программы: Математические основы ИИ
- Программу разработал(а): Д.С. Ватолин
1. Краткая характеристика дисциплины
- Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области компьютерного зрения и обработки видео, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают основы и продвинутые методы компьютерного зрения и обработки видео: применение сверточных фильтров в задачах обнаружения границ, сжатие видео, основы 4D-видео, реконструкция 3D-сцен, задачи трекинга и предсказания областей внимания (салиентных областей), а также состязательные атаки на метрики качества изображений/видео и методы защиты от них.
2. Перечень планируемых результатов обучения
- Целью освоения дисциплины является формирование у студентов глубоких знаний и практических навыков в области анализа, обработки и интерпретации изображений и видео с применением методов машинного и глубокого обучения. Помимо теоретических аспектов, курс акцентирует внимание на разработке и применении изученных алгоритмов с использованием современных программных инструментов и библиотек в практических заданиях, что позволяет студентам применить полученные знания на практике и получить опыт в решении актуальных задач в области компьютерного зрения и обработки видео.
- Задачами дисциплины являются:
- освоение принципов и практик компьютерного зрения и обработки изображений и видео с использованием классических алгоритмов, машинного и глубокого обучения;
- изучение математических основ наиболее важных алгоритмов компьютерного зрения;
- изучение областей и условий применимости алгоритмов компьютерного зрения и обработки видео;
- применение изученных алгоритмов в практическом решении задач компьютерного зрения и обработки видео.
Общая характеристика результата обучения по дисциплине
- Знания: обучающийся получил систематические знания в следующих областях:
- Основы компьютерного зрения и обработки изображений: понимание принципов работы с изображениями и видео, включая их сжатие, восстановление, классификацию и сегментацию.
- Методы машинного обучения и глубокого обучения: знание алгоритмов и моделей, применяемых для распознавания образов, включая свёрточные нейронные сети.
- Алгоритмы детекции границ и объектов: понимание методов поиска границ, линий и объектов на изображениях, включая преобразование Хафа и метод RANSAC.
- Методы калибровки камеры, перспективные преобразования изображений.
- Принципы создания панорам и 3D-реконструкции: освоение методов сшивки изображений (стичинг) и построения трехмерных моделей сцен.
- Методы (метрики) оценки качества изображений и видео. Область их применения, методы состязательных атак на метрики качества и методы защиты от атак.
- Концепция карты внимания (салиентности) в контексте визуального восприятия и обработки изображений.
- Основы 4D видео.
- Теоретические основы задач классификации и детекции, принципы работы Vision Transformer (ViT) и DETR (Detection Transformer).
- Умения: обучающийся развил умения в следующих направлениях:
- Применение алгоритмов и техник обработки изображений для решения конкретных задач компьютерного зрения с использованием Python.
- Выбор корректного алгоритма компьютерного зрения для решения рассмотренных задач компьютерного зрения.
- Использование методов машинного и глубокого обучения для распознавания образов, включая настройку и обучение нейросетей.
- Реализация алгоритмов детекции границ и объектов для извлечения полезной информации из изображений.
- Осуществление процесса калибровки камеры и коррекции дисторсии изображений.
- Создание панорам и выполнение 3D-реконструкции сцен на основе набора изображений.
- Реализация алгоритмов плотной 3D реконструкции и методов Structure from Motion (SfM).
- Анализ и применение стратегий для защиты от атак на метрики качества изображений и видео.
- Разработка и реализация алгоритмов трекинга и предсказания движения объектов.
- Использование техник выделения салиентных областей на изображениях для улучшения анализа и обработки.
- Применение Vision Transformer и DETR для решения задач классификации и детекции объектов.
- Навыки (владения): обучающийся овладел следующими навыками:
- Программирование на Python для реализации алгоритмов компьютерного зрения и обработки изображений.
- Работа с библиотекой OpenCV и другими инструментами для анализа и обработки изображений и видео.
- Применение предварительно обученных моделей глубокого обучения для распознавания лиц, текста и объектов на изображениях.
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | Введение в компьютерное зрение |
|
2. | Свертки, алгоритмы детекции границ |
|
3. | Нейросетевая обработка видео |
|
4. | Методы сжатия данных |
|
5. | Введение в реконструкцию 3D-сцен |
|
6. | Реконструкция 3D-сцены |
|
7. | Атаки на методы оценки визуального качества изображений/видео |
|
8. | Методы защиты от атак на методы оценки визуального качества изображений/видео | |
9. | Задача трекинга, предсказание движения |
|
10. | 4D-видео | |
11. | Карты внимания (салиентность) |
|
12. | Архитектура трансформера в задачах компьютерного зрения. ViT и DETR |
|
13. | Компьютерное зрение в автономном вождении | |
14. | Мультимодальные модели в компьютерном зрении |
|
4. Методические и оценочные материалы
Задания для практических занятий:
№ п/п |
Наименование раздела дисциплины (модуля) |
Перечень рассматриваемых тем (вопросов) |
1. | Свертки, алгоритмы детекции границ |
Имплементации свертки с разными паддингами (same, no padding) |
2. | Нейросетевая обработка видео |
Реализация RAW Imaging Pipeline |
3. | Методы сжатия данных |
Реализация операций изменения размера с помощью разных python библиотек (проблемы антиалиасинга) |
4. | Введение в реконструкцию 3D-сцен |
Реализация фильтра Кэнни |
5. | Реконструкция 3D-сцены |
Реализация перспективных искажений |
6. | Атаки на методы оценки визуального качества изображений/видео |
Реализация нескольких методов атак на методы оценки визуального качества изображений/видео
|
4. | Введение в реконструкцию 3D-сцен |
Реализация фильтра Кэнни |
7. | Методы защиты от атак на методы оценки визуального качества изображений/видео |
Подсчет корреляции метрики на чистых данных
Реализация состязательного обучения метрики |
8. | Задача трекинга, предсказание движения |
Изучение примеров использования обученной модели DETR |
9. | Карты внимания (салиентность) |
Реализация обучения простой модели предсказания карт внимания |
10. | Архитектура трансформера в задачах компьютерного зрения. ViT и DETR |
Реализация простого пайплайна детекции и нахождения объектов |
Текущий контроль успеваемости обучающихся по дисциплине:
№ п/п |
Наименование раздела дисциплины | Форма текущего контроля | Материалы текущего контроля |
1. | Нейросетевая обработка видео | Проверка выполнения домашних заданий |
Практическое задание: |
2. | Введение в реконструкцию 3D-сцен | Проверка выполнения домашних заданий |
Практическое задание: |
3. | Атаки на методы оценки визуального качества изображений/видео | Проверка выполнения домашних заданий |
Практическое задание:
|
4. | Методы защиты от атак на методы оценки визуального качества изображений/видео | Проверка выполнения домашних заданий |
Практическое задание: |
5. | Карты внимания (салиентность) | Проверка выполнения домашних заданий |
Практическое задание: |
6. | Архитектура трансформера в задачах компьютерного зрения. ViT и DETR | Проверка выполнения домашних заданий |
Практическое задание: |
Контрольные вопросы для подготовки к промежуточной аттестации:
Промежуточная аттестация проводится на основе рейтинга, сформированного по результатам текущей аттестации в течение семестра.
Перечень учебно-методического обеспечения дисциплины
Список основной литературы:
- Computer Vision: Algorithms and Applications, 2nd ed. Richard Szeliski, The University of Washington.
- Gonzalez and. Richard E. Woods' Digital Image Processing, Fourth Edition
- Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Cham: Springer International Publishing, 2020.
- Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
Список дополнительной литературы:
- An Introduction to 3D Computer Vision Techniques and Algorithms Boguslaw Cyganek and J. Paul Siebert
- Computational Photography Mastering New Techniques for Lenses, Lighting, and Sensors Jack Tumblin
- Ватолин, Д. С. Методы сжатия изображений : учебное пособие / Д. С. Ватолин. — 2-е изд. — Москва : ИНТУИТ, 2016. — 196 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100646
Методические указания для обучающихся по освоению дисциплины
Вид учебных занятий/деятельности |
Деятельность обучающегося |
Лекция | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
Практическое (семинарское) занятие | При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его. Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы. |
Самостоятельная работа | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Разработка отдельных частей кода | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
Выполнение домашних заданий и групповых проектов | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
Методы и технологии обучения, способствующие формированию компетенции
Методы и технологии обучения, способствующие формированию компетенции |
Информационно-коммуникационная технология, проектная технология, технология проблемного обучения, традиционные технологии, модульные технологии, технология интегрированного обучения |