Difference between revisions of "IU:TestPage"
R.sirgalina (talk | contribs) |
R.sirgalina (talk | contribs) |
||
Line 173: | Line 173: | ||
| || Calculation of Radius of convergence || 2 |
| || Calculation of Radius of convergence || 2 |
||
|} |
|} |
||
+ | === Final assessment === |
||
+ | '''Section 1''' |
||
+ | # <math>{\displaystyle a_{n}=n-{\sqrt {n^{2}-70n+1400}}}</math> |
||
+ | # <math>{\textstyle d_{n}=\left({\frac {2n-4}{2n+1}}\right)^{n}}</math> |
||
+ | # x |
||
+ | |||
+ | n |
||
+ | |||
+ | |||
+ | = |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ( |
||
+ | |||
+ | 2 |
||
+ | |||
+ | n |
||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | + |
||
+ | 1 |
||
+ | |||
+ | ) |
||
+ | |||
+ | |||
+ | 6 |
||
+ | |||
+ | |||
+ | ( |
||
+ | n |
||
+ | − |
||
+ | 1 |
||
+ | |||
+ | ) |
||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ( |
||
+ | |||
+ | |||
+ | n |
||
+ | |||
+ | 7 |
||
+ | |||
+ | |||
+ | + |
||
+ | 1000 |
||
+ | |||
+ | n |
||
+ | |||
+ | 6 |
||
+ | |||
+ | |||
+ | − |
||
+ | 3 |
||
+ | |||
+ | ) |
||
+ | |||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {\textstyle x_{n}={\frac {\left(2n^{2}+1\right)^{6}(n-1)^{2}}{\left(n^{7}+1000n^{6}-3\right)^{2}}}} |
||
+ | |||
+ | . |
||
+ | '''Section 2''' |
||
+ | # <math>{\textstyle y^{(n)}(x)}</math> |
||
+ | # Find the derivatives of the following functions: |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | f |
||
+ | ( |
||
+ | x |
||
+ | ) |
||
+ | = |
||
+ | |||
+ | log |
||
+ | |||
+ | |||
+ | | |
||
+ | |||
+ | sin |
||
+ | |
||
+ | x |
||
+ | |||
+ | | |
||
+ | |||
+ | |||
+ | |||
+ | |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | x |
||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | + |
||
+ | 6 |
||
+ | |||
+ | |||
+ | 6 |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {\textstyle f(x)=\log _{|\sin x|}{\sqrt[{6}]{x^{2}+6}}} |
||
+ | |||
+ | ; |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | y |
||
+ | ( |
||
+ | x |
||
+ | ) |
||
+ | |||
+ | |||
+ | {\textstyle y(x)} |
||
+ | |||
+ | that is given implicitly by |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | x |
||
+ | |||
+ | 3 |
||
+ | |||
+ | |||
+ | + |
||
+ | 5 |
||
+ | x |
||
+ | y |
||
+ | + |
||
+ | |||
+ | y |
||
+ | |||
+ | 3 |
||
+ | |||
+ | |||
+ | = |
||
+ | 0 |
||
+ | |||
+ | |||
+ | {\textstyle x^{3}+5xy+y^{3}=0} |
||
+ | |||
+ | . |
||
+ | # <math>{\textstyle f(x)=\log _{|\sin x|}{\sqrt[{6}]{x^{2}+6}}}</math> |
||
+ | # y |
||
+ | ( |
||
+ | x |
||
+ | ) |
||
+ | |||
+ | |||
+ | {\textstyle y(x)} |
||
+ | |||
+ | that is given implicitly by |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | x |
||
+ | |||
+ | 3 |
||
+ | |||
+ | |||
+ | + |
||
+ | 5 |
||
+ | x |
||
+ | y |
||
+ | + |
||
+ | |||
+ | y |
||
+ | |||
+ | 3 |
||
+ | |||
+ | |||
+ | = |
||
+ | 0 |
||
+ | |||
+ | |||
+ | {\textstyle x^{3}+5xy+y^{3}=0} |
||
+ | |||
+ | . |
||
+ | '''Section 3''' |
||
+ | # <math>{\textstyle \int {\frac {{\sqrt {4+x^{2}}}+2{\sqrt {4-x^{2}}}}{\sqrt {16-x^{4}}}}\,dx}</math> |
||
+ | # <math>{\textstyle \int 2^{2x}e^{x}\,dx}</math> |
||
+ | # <math>{\textstyle \int {\frac {dx}{3x^{2}-x^{4}}}}</math> |
||
+ | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {3+(-1)^{k}}{k^{2}}}}</math> |
||
+ | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {k+1}{k^{2}+3}}}</math> |
||
+ | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {1}{16k^{2}-8k-3}}}</math> |
||
+ | # ∑ |
||
+ | |||
+ | k |
||
+ | = |
||
+ | 1 |
||
+ | |||
+ | |||
+ | ∞ |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | k |
||
+ | − |
||
+ | |||
+ | |||
+ | |||
+ | k |
||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | − |
||
+ | 1 |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | k |
||
+ | |||
+ | 2 |
||
+ | |||
+ | |||
+ | + |
||
+ | k |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {\textstyle \sum \limits _{k=1}^{\infty }{\frac {k-{\sqrt {k^{2}-1}}}{\sqrt {k^{2}+k}}}} |
||
+ | |||
+ | . |
||
+ | |||
+ | === The retake exam === |
||
+ | '''Section 1''' |
||
+ | |||
+ | '''Section 2''' |
||
+ | |||
+ | '''Section 3''' |
Revision as of 16:54, 18 April 2022
Mathematical Analysis I
- Course name: Mathematical Analysis I
- Code discipline:
- Subject area: ['Differentiation', 'Integration', 'Series']
Short Description
Prerequisites
Prerequisite subjects
Prerequisite topics
Course Topics
Section | Topics within the section |
---|---|
Sequences and Limits |
|
Differentiation |
|
Integration and Series |
|
Intended Learning Outcomes (ILOs)
What is the main purpose of this course?
understand key principles involved in differentiation and integration of functions, solve problems that connect small-scale (differential) quantities to large-scale (integrated) quantities, become familiar with the fundamental theorems of Calculus, get hands-on experience with the integral and derivative applications and of the inverse relationship between integration and differentiation.
ILOs defined at three levels
Level 1: What concepts should a student know/remember/explain?
By the end of the course, the students should be able to ...
- Derivative. Differential. Applications
- Indefinite integral. Definite integral. Applications
- Sequences. Series. Convergence. Power Series
Level 2: What basic practical skills should a student be able to perform?
By the end of the course, the students should be able to ...
- Derivative. Differential. Applications
- Indefinite integral. Definite integral. Applications
- Sequences. Series. Convergence. Power Series
- Taylor Series
Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?
By the end of the course, the students should be able to ...
- Take derivatives of various type functions and of various orders
- Integrate
- Apply definite integral
- Expand functions into Taylor series
- Apply convergence tests
Grading
Course grading range
Grade | Range | Description of performance |
---|---|---|
A. Excellent | 90-100 | - |
B. Good | 75-89 | - |
C. Satisfactory | 60-74 | - |
D. Poor | 0-59 | - |
Course activities and grading breakdown
Activity Type | Percentage of the overall course grade |
---|---|
Labs/seminar classes | 20 |
Interim performance assessment | 30 |
Exams | 50 |
Recommendations for students on how to succeed in the course
Resources, literature and reference materials
Open access resources
- Zorich, V. A. “Mathematical Analysis I, Translator: Cooke R.” (2004)
Closed access resources
Software and tools used within the course
Teaching Methodology: Methods, techniques, & activities
Activities and Teaching Methods
Learning Activities | Section 1 | Section 2 | Section 3 |
---|---|---|---|
Homework and group projects | 1 | 1 | 1 |
Midterm evaluation | 1 | 1 | 0 |
Testing (written or computer based) | 1 | 1 | 1 |
Discussions | 1 | 1 | 1 |
Formative Assessment and Course Activities
Ongoing performance assessment
Section 1
Activity Type | Content | Is Graded? |
---|---|---|
Second remarkable limit. | 1 | |
Find a limit of a function | 2 |
Section 2
Activity Type | Content | Is Graded? |
---|---|---|
1 | ||
the derivative y x ′ {\textstyle y'_{x}} . |
1 | |
Derive the Maclaurin expansion for f ( x ) = 1 + e − 2 x 3 {\textstyle f(x)={\sqrt[{3}]{1+e^{-2x}}}} up to o ( x 3 ) {\textstyle o\left(x^{3}\right)} . |
1 | |
Find asymptotes of a parametric function | 2 |
Section 3
Activity Type | Content | Is Graded? |
---|---|---|
1 | ||
1 | ||
Find all values of parameter α {\textstyle \alpha } such that series ∑ k = 1 + ∞ ( 3 k + 2 2 k + 1 ) k α k {\textstyle \displaystyle \sum \limits _{k=1}^{+\infty }\left({\frac {3k+2}{2k+1}}\right)^{k}\alpha ^{k}} converges. |
1 | |
Calculation of Radius of convergence | 2 |
Final assessment
Section 1
- x
n
=
(
2
n
2
+
1
)
6
(
n
−
1
)
2
(
n
7
+
1000
n
6
−
3
)
2
{\textstyle x_{n}={\frac {\left(2n^{2}+1\right)^{6}(n-1)^{2}}{\left(n^{7}+1000n^{6}-3\right)^{2}}}}
. Section 2
- Find the derivatives of the following functions:
f
(
x
)
=
log
|
sin x
|
x
2
+
6
6
{\textstyle f(x)=\log _{|\sin x|}{\sqrt[{6}]{x^{2}+6}}}
y
(
x
)
{\textstyle y(x)}
that is given implicitly by
x
3
+
5
x
y
+
y
3
=
0
{\textstyle x^{3}+5xy+y^{3}=0}
.
- y
( x )
{\textstyle y(x)}
that is given implicitly by
x
3
+
5
x
y
+
y
3
=
0
{\textstyle x^{3}+5xy+y^{3}=0}
. Section 3
- ∑
k = 1
∞
k −
k
2
−
1
k
2
+
k
{\textstyle \sum \limits _{k=1}^{\infty }{\frac {k-{\sqrt {k^{2}-1}}}{\sqrt {k^{2}+k}}}}
.
The retake exam
Section 1
Section 2
Section 3