Difference between revisions of "BSc: HighPerformanceComputing"
I.konyukhov (talk | contribs) |
I.konyukhov (talk | contribs) |
||
Line 232: | Line 232: | ||
=== Методы и технологии обучения, способствующие формированию компетенции === |
=== Методы и технологии обучения, способствующие формированию компетенции === |
||
− | <span style="color:red;">(Указываются все используемые преподавателем методы и технологии обучения)</span> |
||
{| class="wikitable" |
{| class="wikitable" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
Revision as of 19:53, 8 February 2024
Высокопроизводительные вычисления
- Квалификация выпускника: бакалавр
- Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
- Направленность (профиль) образовательной программы: Математические основы ИИ
- Программу разработал(а): Конюхов И.В.
1. Краткая характеристика дисциплины
Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области программного обеспечения и его разработки; искусственного интеллекта и его применения для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают некоторые известные численные алгоритмы и особенности их параллельной реализации на центральных и графических процессорах. Рассматриваются прямые методы решения систем линейных алгебраических уравнений с матрицами общего и специального типов (метод Гаусса, разложение Холецкого, прогонка), итерационные методы решения систем линейных уравнений (методы простой итерации и верхней релаксации), вопросы реализации разреженных матриц и алгебры над ними, методы Монте-Карло, численные методы решения систем обыкновенных дифференциальных уравнений и уравнений с частными производными, а также новейшие физически-информированные нейронные сети.
2. Перечень планируемых результатов обучения
- Целью освоения дисциплины является формирование общего понимания высокоэффективной реализации общих вычислительных алгоритмов с использованием процессоров различных типов и архитектур, а также демонстрация современных подходов к вычислительным алгоритмам на базе технологий машинного обучения.
- Задачами дисциплины являются изучение технологий параллельного программирования на центральных, графических и нейропроцессорах, анализ вычислительных алгоритмов с целью выявления точек параллелизма (hotpoints) и узких мест (bottle necks), а также внедрение технологий искусственного интеллекта и нейронных сетей в классические вычислительные задачи.
Общая характеристика результата обучения по дисциплине
- Знания:
- подходов к параллельному программированию,
- архитектур современных процессоров,
- программных моделей с общей памятью,
- архитектуры современных графических процессоров,
- основ выполнения вычислений общего назначения на разных платформах,
- современных подходов к программированию алгоритмов решения задач математики и физики.
- Умения:
- SIMD- и MIMD-программирование для CPU,
- SIMD-программирование для GPU,
- выполнять синхронизацию потоков,
- выполнять оптимизация общей памяти.
- Навыки (владения):
- проведения анализ алгоритмов на предмет возможного параллелизма с выявлением "горячих точек" и "бутылочных горлышек",
- применения современного параллельного программирования к методам статистики,
- решения систем алгебраических уравнений наиболее эффективным способом,
- решения основных типов дифференциальных уравнений, встречающихся в широком спектре реальных задач,
- применения современных вычислительных алгоритмов на основе машинного обучения для решения различных типов дифференциальных уравнений.
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | Введение в высокопроизводительные вычисления, OpenMP и OpenCL | - Существующие суперкомпьютерные системы - Модель общей памяти - Подходы к программированию MIMD и SIMD - Массивно-параллельные ускорители - Иерархия памяти |
2. | Параллельные алгоритмы линейной алгебры | - Матричное умножение: оптимизация производительности различных реализаций на основе различных типов памяти устройства - Прямые методы решения СЛАУ: исключение Гаусса, разложение Холецкого, метод прогонки, параллельная реализация - Итерационные методы решения СЛАУ: метод Якоби, метод Зейделя, релаксационные методы, параллельная реализация |
3. | Параллельные методы решения дифференциальных уравнений | - Решение систем обыкновенных дифференциальных уравнений - Решение волнового уравнения - Решение задачи теплопроводности - Решение задачи Дирихле для уравнения Пуассона |
4. | Физически информированные нейронные сети | - Основы нейронных сетей - Основы методов оптимизации - Принципы преобразования задач, записанных в терминах дифференциальных уравнений, в оптимизационные - Повышение эффективности процедуры обучения |
5. | Параллельные методы Монте-Карло | - Вычисление определенных интегралов - Способы уменьшения дисперсии - Генераторы псевдослучайных чисел - Подходы к распараллеливанию методов Монте-Карло |
6. | Высокопроизводительные вычисления и современные языки программирования | - Многопоточность в современных языках программирования - Существующие обертки для OpenCL и CUDA - Другие высокоуровневые подходы к параллельному программированию |
4. Методические и оценочные материалы
Задания для практических занятий:
№ п/п |
Наименование раздела дисциплины (модуля) |
Перечень рассматриваемых тем (вопросов) (Указываются ВСЕ задания для практических занятий по разделам дисциплины подробно в соответствии с темами) |
1. | Введение в высокопроизводительные вычисления, OpenMP и OpenCL | |
2. | Параллельные алгоритмы линейной алгебры | |
3. | Параллельные методы решения дифференциальных уравнений | |
4. | Физически информированные нейронные сети | |
5. | Параллельные методы Монте-Карло | |
6. | Высокопроизводительные вычисления и современные языки программирования |
Текущий контроль успеваемости обучающихся по дисциплине:
(К формам текущего контроля можно отнести собеседование, коллоквиум, тест, контрольную работу, лабораторную работу, эссе, реферат и иные творческие работы.)
№ п/п |
Наименование раздела дисциплины |
Форма текущего контроля (выберите соответствующие формы контроля) |
Материалы текущего контроля (Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ текущего контроля успеваемости обучающихся по разделам дисциплины подробно в соответствии с требованиями) |
1. | Проверка выполнения домашних заданий; Устный / письменный опрос; Тестирование (письменное или компьютерное); Эссе; Доклад; Защита проекта; Коллоквиум; Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях |
Например:
Устный / письменный опрос: Другие формы текущего контроля, используемые Вами на занятиях | |
2. | Проверка выполнения домашних заданий; Устный / письменный опрос; Тестирование (письменное или компьютерное); Эссе; Доклад; Защита проекта; Коллоквиум; Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях |
||
3. | Проверка выполнения домашних заданий; Устный / письменный опрос; Тестирование (письменное или компьютерное); Эссе; Доклад; Защита проекта; Коллоквиум; Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях |
||
4. | Проверка выполнения домашних заданий; Устный / письменный опрос; Тестирование (письменное или компьютерное); Эссе; Доклад; Защита проекта; Коллоквиум; Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях |
||
5. | Проверка выполнения домашних заданий; Устный / письменный опрос; Тестирование (письменное или компьютерное); Эссе; Доклад; Защита проекта; Коллоквиум; Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях |
||
6. | Высокопроизводительные вычисления и современные языки программирования |
Контрольные вопросы для подготовки к промежуточной аттестации:
№ п/п |
Наименование раздела дисциплины |
Вопросы |
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. |
Вопросы/Задания к промежуточной аттестации в устной/письменной форме:
- Что такое закон Амдала?
- Перечислите особенности #pragma parallel
- Какие типы клаузул доступа к памяти вы знаете?
- Сравните секции и задачи OpenMP
- Как синхронизировать потоки в OpenMP?
- Опишите структуру программы OpenCL
- Какие виды памяти в OpenCL вы знаете?
- Что такое ядра OpenCL?
- Перечислите сервисные операции OpenCL
- Как вычислить определенный интеграл?
- Что такое случайная переменная?
- Что такое генератор случайных величин?
- Как построить генератор случайных величин?
- Как работают методы Монте-Карло?
- Как выполнить умножение разреженных матриц?
- Перечислите прямые методы решения СЛАУ
- В чем разница между устранением Гаусса и разложением Холески?
- Объясните итерационный алгоритм решения СЛАУ на графе
- Как ускорить алгоритмы линейной алгебры с помощью многопоточного программирования?
- Каковы граничные условия для дифференциальных уравнений с частными производными?
- Каковы начальные условия для дифференциальных уравнений с частными производными?
- В чем разница между явными и неявными конечно-разностными схемами?
- Перечислите возможные способы решения задачи о распространении тепла в пластине.
- Переформулируйте поставленную задачу Коши в оптимизационную задачу.
- Что такое PINN-подход к дифференциальным уравнениям?
- Перечислите известные оптимизаторы и их особенности.
- Как избежать влияния начального условия на значение, выдаваемое нейронной сетью?
- Что делать с начальным распределением функции в задаче PDE, формулируя задачу оптимизации?
- Что делать с граничными условиями в PDE-задаче, формулирующей оптимизационную задачу?
- Как решить систему ODE с помощью PINN-подхода?
- Сравните Nvidia CUDA и OpenCL. В чем плюсы и минусы обоих наборов инструментов?
- Сравнение библиотек OpenACC и OpenMP: основные различия и цели другого подхода
- C#: библиотека параллельных задач
- Java: Runnable
- Python: модуль потоков
Перечень учебно-методического обеспечения дисциплины
Список основной литературы:
- Barbara Chapman, Gabriele Jost, Ruud van der Pas. (2008) Using OpenMP: Portable Shared Memory Parallel Programming, The MIT Press,
- Scarpino, M. (2011) OpenCL in Action: How to Accelerate Graphics and Computations, Manning.
- Banger, R., Bhattacharyya, K. (2013) OpenCL Programming by Example, Packt Publishing.
- Sanders, J., Kandrot, E. (2010) CUDA by example: an introduction to general-purpose GPU programming, Addison-Weslye
Список дополнительной литературы:
- Введение в высокопроизводительные вычисления: introduction-high-performance-computing
- Введение в параллельное программирование: introduction-parallel-programming
- Учебные материалы по OpenMP: OpenMP-tutorials
- Учебные материалы по OpenCL: OpenCL-tutorials
Методические указания для обучающихся по освоению дисциплины
Вид учебных занятий/деятельности |
Деятельность обучающегося |
Лекция | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
Практические (лабораторные) занятия | Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов. |
Самостоятельная работа | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка презентаций. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Доклад | Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Дискуссия | Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию. |
Разработка отдельных частей кода | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
Выполнение домашних заданий и групповых проектов | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
Индивидуальная работа | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
Тестирование (устное/письменное) | При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части. |
Методы и технологии обучения, способствующие формированию компетенции
Методы и технологии обучения, способствующие формированию компетенции |
Информационно-коммуникационная технология, проектная технология, технология проблемного обучения, кейс-технология, традиционные технологии, модульные технологии |