Difference between revisions of "IU:TestPage"
Jump to navigation
Jump to search
R.sirgalina (talk | contribs) |
R.sirgalina (talk | contribs) Tag: Manual revert |
||
Line 46: | Line 46: | ||
# Functional series. Uniform convergence |
# Functional series. Uniform convergence |
||
|} |
|} |
||
− | == Intended Learning Outcomes (ILOs) == |
||
− | |||
− | === What is the main purpose of this course? === |
||
− | understand key principles involved in differentiation and integration of functions, solve problems that connect small-scale (differential) quantities to large-scale (integrated) quantities, become familiar with the fundamental theorems of Calculus, get hands-on experience with the integral and derivative applications and of the inverse relationship between integration and differentiation. |
||
− | |||
− | === ILOs defined at three levels === |
||
− | |||
− | ==== Level 1: What concepts should a student know/remember/explain? ==== |
||
− | By the end of the course, the students should be able to ... |
||
− | * Derivative. Differential. Applications |
||
− | * Indefinite integral. Definite integral. Applications |
||
− | * Sequences. Series. Convergence. Power Series |
||
− | |||
− | ==== Level 2: What basic practical skills should a student be able to perform? ==== |
||
− | By the end of the course, the students should be able to ... |
||
− | * Derivative. Differential. Applications |
||
− | * Indefinite integral. Definite integral. Applications |
||
− | * Sequences. Series. Convergence. Power Series |
||
− | * Taylor Series |
||
− | |||
− | ==== Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios? ==== |
||
− | By the end of the course, the students should be able to ... |
||
− | * Take derivatives of various type functions and of various orders |
||
− | * Integrate |
||
− | * Apply definite integral |
||
− | * Expand functions into Taylor series |
||
− | * Apply convergence tests |
||
− | == Grading == |
||
− | |||
− | === Course grading range === |
||
− | {| class="wikitable" |
||
− | |+ |
||
− | |- |
||
− | ! Grade !! Range !! Description of performance |
||
− | |- |
||
− | | A. Excellent || 90-100 || - |
||
− | |- |
||
− | | B. Good || 75-89 || - |
||
− | |- |
||
− | | C. Satisfactory || 60-74 || - |
||
− | |- |
||
− | | D. Poor || 0-59 || - |
||
− | |} |
||
− | |||
− | === Course activities and grading breakdown === |
||
− | {| class="wikitable" |
||
− | |+ |
||
− | |- |
||
− | ! Activity Type !! Percentage of the overall course grade |
||
− | |- |
||
− | | Labs/seminar classes || 20 |
||
− | |- |
||
− | | Interim performance assessment || 30 |
||
− | |- |
||
− | | Exams || 50 |
||
− | |} |
||
− | |||
− | === Recommendations for students on how to succeed in the course === |
||
− | |||
− | |||
− | == Resources, literature and reference materials == |
||
− | |||
− | === Open access resources === |
||
− | * Zorich, V. A. “Mathematical Analysis I, Translator: Cooke R.” (2004) |
||
− | |||
− | === Closed access resources === |
||
− | |||
− | |||
− | === Software and tools used within the course === |
||
− | = Teaching Methodology: Methods, techniques, & activities = |
||
− | |||
− | == Activities and Teaching Methods == |
||
− | {| class="wikitable" |
||
− | |+ Activities within each section |
||
− | |- |
||
− | ! Learning Activities !! Section 1 !! Section 2 !! Section 3 |
||
− | |- |
||
− | | Homework and group projects || 1 || 1 || 1 |
||
− | |- |
||
− | | Midterm evaluation || 1 || 1 || 0 |
||
− | |- |
||
− | | Testing (written or computer based) || 1 || 1 || 1 |
||
− | |- |
||
− | | Discussions || 1 || 1 || 1 |
||
− | |} |
||
− | == Formative Assessment and Course Activities == |
||
− | |||
− | === Ongoing performance assessment === |
||
− | |||
− | ==== Section 1 ==== |
||
− | {| class="wikitable" |
||
− | |+ |
||
− | |- |
||
− | ! Activity Type !! Content !! Is Graded? |
||
− | |- |
||
− | | || Second remarkable limit. || 1 |
||
− | |- |
||
− | | || Find a limit of a function || 2 |
||
− | |} |
||
− | ==== Section 2 ==== |
||
− | {| class="wikitable" |
||
− | |+ |
||
− | |- |
||
− | ! Activity Type !! Content !! Is Graded? |
||
− | |- |
||
− | | || <math>{\displaystyle x(t)=-{\frac {t^{2}+4t+8}{t+2}}}</math> || 1 |
||
− | |- |
||
− | | || the derivative <br><br><br><br><br>y<br><br>x<br><br>′<br><br><br><br>{\textstyle y'_{x}}<br><br>. || 1 |
||
− | |- |
||
− | | || Derive the Maclaurin expansion for <br><br><br><br>f<br>(<br>x<br>)<br>=<br><br><br><br>1<br>+<br><br>e<br><br>−<br>2<br>x<br><br><br><br><br>3<br><br><br><br><br><br>{\textstyle f(x)={\sqrt[{3}]{1+e^{-2x}}}}<br><br> up to <br><br><br><br>o<br><br>(<br><br>x<br><br>3<br><br><br>)<br><br><br><br>{\textstyle o\left(x^{3}\right)}<br><br>. || 1 |
||
− | |- |
||
− | | || Find asymptotes of a parametric function || 2 |
||
− | |} |
||
− | ==== Section 3 ==== |
||
− | {| class="wikitable" |
||
− | |+ |
||
− | |- |
||
− | ! Activity Type !! Content !! Is Graded? |
||
− | |- |
||
− | | || <math>{\textstyle \displaystyle \int x\ln \left(x+{\sqrt {x^{2}-1}}\right)\,dx}</math> || 1 |
||
− | |- |
||
− | | || <math>{\textstyle y=\ln \sin x}</math> || 1 |
||
− | |- |
||
− | | || Find all values of parameter <br><br><br><br>α<br><br><br>{\textstyle \alpha }<br><br> such that series <br><br><br><br><br><br>∑<br><br>k<br>=<br>1<br><br><br>+<br>∞<br><br><br><br><br>(<br><br><br><br>3<br>k<br>+<br>2<br><br><br>2<br>k<br>+<br>1<br><br><br><br>)<br><br><br>k<br><br><br><br>α<br><br>k<br><br><br><br><br><br>{\textstyle \displaystyle \sum \limits _{k=1}^{+\infty }\left({\frac {3k+2}{2k+1}}\right)^{k}\alpha ^{k}}<br><br> converges. || 1 |
||
− | |- |
||
− | | || Calculation of Radius of convergence || 2 |
||
− | |} |
||
− | === Final assessment === |
||
− | '''Section 1''' |
||
− | # <math>{\displaystyle a_{n}=n-{\sqrt {n^{2}-70n+1400}}}</math> |
||
− | # <math>{\textstyle d_{n}=\left({\frac {2n-4}{2n+1}}\right)^{n}}</math> |
||
− | # x |
||
− | |||
− | n |
||
− | |||
− | |||
− | = |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ( |
||
− | |||
− | 2 |
||
− | |||
− | n |
||
− | |||
− | 2 |
||
− | |||
− | |||
− | + |
||
− | 1 |
||
− | |||
− | ) |
||
− | |||
− | |||
− | 6 |
||
− | |||
− | |||
− | ( |
||
− | n |
||
− | − |
||
− | 1 |
||
− | |||
− | ) |
||
− | |||
− | 2 |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ( |
||
− | |||
− | |||
− | n |
||
− | |||
− | 7 |
||
− | |||
− | |||
− | + |
||
− | 1000 |
||
− | |||
− | n |
||
− | |||
− | 6 |
||
− | |||
− | |||
− | − |
||
− | 3 |
||
− | |||
− | ) |
||
− | |||
− | |||
− | 2 |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {\textstyle x_{n}={\frac {\left(2n^{2}+1\right)^{6}(n-1)^{2}}{\left(n^{7}+1000n^{6}-3\right)^{2}}}} |
||
− | |||
− | . |
||
− | '''Section 2''' |
||
− | # <math>{\textstyle y^{(n)}(x)}</math> |
||
− | # Find the derivatives of the following functions: |
||
− | |||
− | |||
− | |||
− | |||
− | f |
||
− | ( |
||
− | x |
||
− | ) |
||
− | = |
||
− | |||
− | log |
||
− | |||
− | |||
− | | |
||
− | |||
− | sin |
||
− | |
||
− | x |
||
− | |||
− | | |
||
− | |||
− | |||
− | |||
− | |
||
− | |||
− | |||
− | |||
− | |||
− | x |
||
− | |||
− | 2 |
||
− | |||
− | |||
− | + |
||
− | 6 |
||
− | |||
− | |||
− | 6 |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {\textstyle f(x)=\log _{|\sin x|}{\sqrt[{6}]{x^{2}+6}}} |
||
− | |||
− | ; |
||
− | |||
− | |||
− | |||
− | |||
− | y |
||
− | ( |
||
− | x |
||
− | ) |
||
− | |||
− | |||
− | {\textstyle y(x)} |
||
− | |||
− | that is given implicitly by |
||
− | |||
− | |||
− | |||
− | |||
− | x |
||
− | |||
− | 3 |
||
− | |||
− | |||
− | + |
||
− | 5 |
||
− | x |
||
− | y |
||
− | + |
||
− | |||
− | y |
||
− | |||
− | 3 |
||
− | |||
− | |||
− | = |
||
− | 0 |
||
− | |||
− | |||
− | {\textstyle x^{3}+5xy+y^{3}=0} |
||
− | |||
− | . |
||
− | # <math>{\textstyle f(x)=\log _{|\sin x|}{\sqrt[{6}]{x^{2}+6}}}</math> |
||
− | # y |
||
− | ( |
||
− | x |
||
− | ) |
||
− | |||
− | |||
− | {\textstyle y(x)} |
||
− | |||
− | that is given implicitly by |
||
− | |||
− | |||
− | |||
− | |||
− | x |
||
− | |||
− | 3 |
||
− | |||
− | |||
− | + |
||
− | 5 |
||
− | x |
||
− | y |
||
− | + |
||
− | |||
− | y |
||
− | |||
− | 3 |
||
− | |||
− | |||
− | = |
||
− | 0 |
||
− | |||
− | |||
− | {\textstyle x^{3}+5xy+y^{3}=0} |
||
− | |||
− | . |
||
− | '''Section 3''' |
||
− | # <math>{\textstyle \int {\frac {{\sqrt {4+x^{2}}}+2{\sqrt {4-x^{2}}}}{\sqrt {16-x^{4}}}}\,dx}</math> |
||
− | # <math>{\textstyle \int 2^{2x}e^{x}\,dx}</math> |
||
− | # <math>{\textstyle \int {\frac {dx}{3x^{2}-x^{4}}}}</math> |
||
− | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {3+(-1)^{k}}{k^{2}}}}</math> |
||
− | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {k+1}{k^{2}+3}}}</math> |
||
− | # <math>{\textstyle \sum \limits _{k=1}^{\infty }{\frac {1}{16k^{2}-8k-3}}}</math> |
||
− | # ∑ |
||
− | |||
− | k |
||
− | = |
||
− | 1 |
||
− | |||
− | |||
− | ∞ |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | k |
||
− | − |
||
− | |||
− | |||
− | |||
− | k |
||
− | |||
− | 2 |
||
− | |||
− | |||
− | − |
||
− | 1 |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | k |
||
− | |||
− | 2 |
||
− | |||
− | |||
− | + |
||
− | k |
||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {\textstyle \sum \limits _{k=1}^{\infty }{\frac {k-{\sqrt {k^{2}-1}}}{\sqrt {k^{2}+k}}}} |
||
− | |||
− | . |
||
− | |||
− | === The retake exam === |
||
− | '''Section 1''' |
||
− | |||
− | '''Section 2''' |
||
− | |||
− | '''Section 3''' |
Revision as of 14:23, 19 April 2022
Mathematical Analysis I
- Course name: Mathematical Analysis I
- Code discipline:
- Subject area: ['Differentiation', 'Integration', 'Series']
Short Description
Prerequisites
Prerequisite subjects
Prerequisite topics
Course Topics
Section | Topics within the section |
---|---|
Sequences and Limits |
|
Differentiation |
|
Integration and Series |
|