Difference between revisions of "BSc: AnalyticGeometry"

From IU
Jump to navigation Jump to search
Line 78: Line 78:
 
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;"
 
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;"
 
| style="text-align:center;" | 2. || Матричная алгебра ||
 
| style="text-align:center;" | 2. || Матричная алгебра ||
  +
# Найти <math display="inline">A+B</math> и <math display="inline">2A-3B+I</math>.
  +
# Найдите произведения <math display="inline">AB</math> и <math display="inline">BA</math> (и поэтому убедитесь, что, в общем случае, <math display="inline">AB\neq BA</math> для матриц).
  +
# Найдите обратные матрицы для заданных.
  +
# Найдите определители данных матриц.
  +
# Точка <math display="inline">M</math> является центроидом грани <math display="inline">BCD</math> тетраэдра <math display="inline">ABCD</math>. Старая система координат задается <math display="inline">A</math>, <math display="inline">\overrightarrow{AB}</math>, <math display="inline">\overrightarrow{AC}</math>, <math display="inline">\overrightarrow{AD}</math>, а новая система координат задается <math display="inline">M</math>, <math display="inline">\overrightarrow{MB}</math>, <math display="inline">\overrightarrow{MC}</math>, <math display="inline">\overrightarrow{MA}</math>. Найдите координаты точки в старой системе координат с учетом ее координат <math display="inline">x'</math>, <math display="inline">y'</math>, <math display="inline">z'</math> в новой.
 
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;"
 
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;"
 
| style="text-align:center;" | 3. || Системы координат, ориентация на плоскости и в пространстве ||
 
| style="text-align:center;" | 3. || Системы координат, ориентация на плоскости и в пространстве ||

Revision as of 14:19, 26 March 2024

Аналитическая геометрия

Квалификация выпускника: бакалавр
Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
Направленность (профиль) образовательной программы: Математические основы ИИ
Программу разработал(а): Конюхов И.В.

1. Краткая характеристика дисциплины

Вводный курс аналитической геометрии и линейной алгебры. Во время изучения курса студенты знакомятся с фундаментальными принципами векторной алгебры и ее приложениями при решении геометрических задач, различными типами уравнений прямых и плоскостей, конических сечений и квадратичных поверхностей, преобразованиями в плоскости и в пространстве. Также приводится введение в матрицы и определители как фундаментальные понятия линейной алгебры. Отличительной особенностью курса является наглядная демонстрация изучаемых концепций с помощью исходных кодов программ на языке Python с одновременной визуализацией результатов с использованием библиотеки Matplotlib. Материалы курса оформлены в виде интерактивных презентаций Jupyter Notebooks.

2. Перечень планируемых результатов обучения

Целью освоения дисциплины является:
  • формирование базовых знаний аналитической геометрии и линейной алгебры для дальнейшего использования в других областях математического знания и дисциплинах естественнонаучного содержания;
  • формирование математической культуры, исследовательских навыков и способности применять эти знания на практике.
Задачами дисциплины являются:
  • формирование у обучающихся базовых знаний по аналитической геометрии;
  • формирование умений логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями;
  • формирование умений и навыков применять полученные знания для решения геометрических задач, самостоятельного анализа полученных результатов.
  • формирование умений и навыков записи и обработки базовых математических выражений с помощью языка программирования Python.

Общая характеристика результата обучения по дисциплине

Знания:
  • основных определений векторной алгебры;
  • видов систем координат, способов перехода от одной системы координат к другой;
  • скалярного, векторного, смешанного произведения;
  • уравнений прямых на плоскости и в пространстве, уравнений плоскости в пространстве;
  • канонические уравнения кривых второго порядка;
  • канонические уравнения поверхностей второго порядка.
Умения:
  • решать простейшие задачи аналитической геометрии методом координат;
  • использовать векторную алгебру для решения задач;
  • использовать различные виды уравнений прямых и плоскостей для решения задач;
  • определять вид кривых и поверхностей второго порядка по их каноническим уравнениям и рисовать эскизы их графиков;
  • исследовать свойства геометрических объектов по заданному уравнению.
Навыки (владения):
  • математическим аппаратом аналитической геометрии, аналитическими методами исследования геометрических объектов,
  • записи и обработки математических выражений, визуализации результатов расчетов с использованием языка Python.

3. Структура и содержание дисциплины


п/п
Наименование раздела
дисциплины
Содержание дисциплины по темам
1. Векторная алгебра - Направленные отрезки и векторы, линейные операции над ними. Свойства линейных операций.
- Коллинеарность и компланарность векторов.
- Линейно зависимые и независимые системы векторов. Связь линейной зависимости с коллинеарностью и компланарностью векторов.
- Базис, координаты вектора в базисе.
- Действия с векторами в координатах.
2. Матричная алгебра - Матрицы и алгебраические операции с матрицами. Элементарные преобразования матриц.
- Обратная матрица.
- Определитель матрицы и его свойства. Миноры, алгебраические дополнения. Определитель произведения матриц.
- Критерий обратимости. Формула для элементов обратной матрицы.
3. Системы координат, ориентация на плоскости и в пространстве - Определения общей декартовой и прямоугольной(ортонормированной) системы координат. Матрица перехода и ее основное свойство.

Изменение координат вектора при замене базиса. Изменение координат точки при переходе к новой системе координат. Формулы перехода от одной прямоугольной системы координат на плоскости к другой.
- Скалярное произведение и его свойства.Ортогональные проекции. Выражение скалярного произведения в координатах, выражение в ортонормированном базисе. Формулы для определения расстояния между точками и угла между векторами.
- Ориентация на плоскости и в пространстве. Смешанное и векторное произведения векторов, их свойства и геометрический смысл. Выражение смешанного и векторного произведений через координаты векторов. Условия коллинеарности и компланарности векторов.

4. Прямые и плоскости - Векторные и координатные формы уравнения прямой на плоскости в пространстве.
- Условия параллельности (или совпадения), перпендикулярности прямых на плоскости, заданных в координатной форме.
- Условия параллельности и перпендикулярности двух прямых в пространстве.
- Расстояние от точки до прямой на плоскости и в пространстве. Расстояние между двумя прямыми в пространстве.
- Векторные и координатные формы уравнения плоскости.
- Условия параллельности (или совпадения) плоскостей, заданных в координатной форме.
- Расстояние от точки до плоскости в пространстве и расстояние между параллельными плоскостями.
- Условия параллельности и перпендикулярности прямой и плоскости. Прямая как линия пересечения двух плоскостей.
- Общий перпендикуляр двух скрещивающихся прямых.
5. Кривые второго порядка - Алгебраические линии второго порядка на плоскости, их классификация.
- Приведение уравнения линии второго порядка к каноническому виду.
- Центр линии второго порядка, центральные и нецентральные линии.
- Ортогональные инварианты
6. Поверхности второго порядка - Эллипс,гипербола и парабола,их свойства. Касательные к эллипсу, гиперболе и параболе.
- Уравнения эллипса, гиперболы и параболы в полярной системе координат.

Цилиндрические и конические поверхности. Поверхности вращения.
- Эллипсоид, гиперболоид, параболоид и конус второго порядка, их основные свойства. Прямолинейные образующие. Сечения.

7. Преобразования на плоскости и в пространстве - Отображения и преобразования плоскости. Произведение(композиция) отображений. Взаимно однозначное отображение, обратное отображение.
- Линейные преобразования плоскости. Координатное представление линейных преобразований плоскости.
- Аффинные преобразования плоскости и их основные свойства.

4. Методические и оценочные материалы

Задания для практических занятий:


п/п
Наименование раздела
дисциплины (модуля)
Перечень рассматриваемых тем (вопросов)
1. Векторная алгебра
  1. Оцените значение , если дано , , .
  2. Докажите, что вектора и перпендикулярны друг-другу.
  3. Основания и трапеции соотносятся как . Диагонали трапеции пересекаются в точке , а дополнения сторон и пересекаются в точке . Рассмотрим базис с началом в точке и векторами , в качестве базисных векторов. Найдите координаты точек и в этом базисе.
  4. Отрезок прямой, соединяющий вершину тетраэдра с центроидом противоположной грани (центроид треугольника является точкой пересечения всех его медиан), называется медианой этого тетраэдра. Используя векторную алгебру, докажите, что все четыре медианы любого тетраэдра сходятся в точке, которая делит эти медианы в соотношении , причем более длинные сегменты находятся на стороне вершины тетраэдра.
2. Матричная алгебра
  1. Найти и .
  2. Найдите произведения и (и поэтому убедитесь, что, в общем случае, для матриц).
  3. Найдите обратные матрицы для заданных.
  4. Найдите определители данных матриц.
  5. Точка является центроидом грани тетраэдра . Старая система координат задается , , , , а новая система координат задается , , , . Найдите координаты точки в старой системе координат с учетом ее координат , , в новой.
3. Системы координат, ориентация на плоскости и в пространстве
4. Прямые и плоскости
5. Кривые второго порядка
6. Поверхности второго порядка
7. Преобразования на плоскости и в пространстве

Текущий контроль успеваемости обучающихся по дисциплине:


п/п
Наименование раздела
дисциплины
Форма текущего контроля
Материалы текущего контроля
1. Векторная алгебра Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Тестирование (письменное или компьютерное)

- Как включить поддержку OpenMP в проекте?
- Как определить, поддерживает ли GPU OpenCL или нет?
- Как собрать информацию о CPU?
- Как собрать информацию о GPU?
- Как выполнять код параллельно с использованием OpenMP?
- Как выполнять код параллельно на GPU?

2. Матричная алгебра Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Тестирование (письменное или компьютерное):

- Что такое разреженные матрицы?
- Опишите особенности умножения разреженных матриц
- Объясните прямой и обратный путь разложения Гаусса
- Как составить схему решения метода прогонки?
- Как организовать итерации для приближенного решения СЛАУ?
- Как понять, нужно ли останавливать итерационный процесс или нет?
- Как оптимизировать алгоритмы умножения матриц с точки зрения затрат памяти и времени?

3. Системы координат, ориентация на плоскости и в пространстве Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Тестирование (письменное или компьютерное):

- Что такое волновое уравнение?
- Что такое уравнение теплопроводности?
- Как задача теплопроводности связана с задачей диффузии?
- Как описать такие задачи с помощью дифференциальных уравнений?
- Что такое "преобразование" с точки зрения математики?
- Какие типы преобразований вы знаете для решения дифференциальных уравнений?
- Как численно решать системы обыкновенных дифференциальных уравнений?

4. Прямые и плоскости Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Тестирование (письменное или компьютерное):

- Что такое нейронная сеть?
- Какова структура однослойного и многослойного перцептрона?
- Как переформулировать задачу Коши с начальным значением в терминах задачи оптимизации?
- Как оценить погрешность алгоритма PINN?
- В чем плюсы и минусы подхода PINN по сравнению с классическими численными методами?
- Как ускорить процедуру обучения с помощью параллельного программирования?

5. Кривые второго порядка Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Тестирование (письменное или компьютерное):

- Что такое определенный интеграл?
- Каковы классические формулы квадратур?
- Что такое равномерное распределение?
- Что такое нормальное распределение?
- Как использовать распределения при построении генераторов случайных величин?
- Как использовать статистический подход для оценки определенного интеграла?
- Как вычислить число Пи с помощью метода Монте-Карло?

6. Поверхности второго порядка Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Темы докладов:

- Тестирование (письменное или компьютерное):

7. Преобразования на плоскости и в пространстве Проверка выполнения домашних заданий;
Тестирование (письменное или компьютерное);
Проверка разработки отдельных частей кода программного продукта
Темы докладов:

- Тестирование (письменное или компьютерное):

Контрольные вопросы для подготовки к промежуточной аттестации:


п/п
Наименование раздела
дисциплины (модуля)
Вопросы
1. Векторная алгебра
2. Матричная алгебра
3. Системы координат, ориентация на плоскости и в пространстве
4. Прямые и плоскости
5. Кривые второго порядка
6. Поверхности второго порядка
7. Преобразования на плоскости и в пространстве

Вопросы/Задания к промежуточной аттестации в устной/письменной форме:

  1. Сложение векторов. Умножение вектора на число. Свойства операций.
  2. Линейная зависимость векторов. Теорема о линейной зависимости коллинеарных векторов (с доказательством).
  3. Базис. Разложение вектора по базису. Координаты вектора.
  4. Теорема о координатах линейной комбинации векторов (с доказательством).
  5. Скалярное произведение векторов. Определение, свойства.
  6. Скалярное произведение векторов в координатах ортонормированного базиса (вывод).
  7. Проекция вектора на прямую.
  8. Векторное произведение. Определение, свойства.
  9. Смешанное произведение. Определение, свойства.
  10. Координаты точки. Декартова система координат на плоскости.
  11. Полярная система координат. Сферическая система координат. Цилиндрическая система координат.
  12. Преобразование координат. Параллельный перенос ПДСК на плоскости.
  13. Преобразование координат. Поворот ПДСК на плоскости.
  14. Координаты середины отрезка (вывод).
  15. Условие коллинеарности трёх точек (вывод).
  16. Расстояние между двумя точками (вывод).
  17. Деление отрезка в данном отношении.
  18. Задание прямой двумя точками.
  19. Параметрическое уравнение прямой.
  20. Задание прямой точкой и вектором нормали.
  21. Уравнение прямой в отрезках.
  22. Уравнение прямой с угловым коэффициентом.
  23. Исследование общего уравнения прямой.
  24. Взаимное расположение двух прямых на плоскости – параллельность, совпадение, пересечение.
  25. Угол между прямыми на плоскости.
  26. Расстояние от точки до прямой. Отклонение точки от прямой.
  27. Способы задания плоскости.
  28. Исследование общего уравнения плоскости.
  29. Взаимное расположение двух плоскостей в пространстве.
  30. Взаимное расположение трёх плоскостей в пространстве (плоскости имеют одну общую точку; пересекаются по одной прямой; две плоскости параллельны, третья их пересекает; плоскости параллельны; совпадающие плоскости).
  31. Способы задания прямой в пространстве. Взаимное расположение двух прямых в пространстве.
  32. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.
  33. Метрические задачи в пространстве (расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя прямыми).
  34. Эллипс. Определение, вывод уравнения, свойства.
  35. Гипербола. Определение, вывод уравнения, свойства.
  36. Парабола. Определение, вывод уравнения, свойства.
  37. Эллиптический цилиндр, гиперболический цилиндр, параболический цилиндр.
  38. Эллипсоид.
  39. Однополостный гиперболоид. Двуполостный гиперболоид.
  40. Эллиптический параболоид. Гиперболический параболоид.
  41. Линейные преобразования. Примеры. Свойства.
  42. Аффинные отображения. Уравнения аффинных отображений. Изоморфизм аффинных пространств.
  43. Группа аффинных преобразований аффинного пространства. Инвариант группы аффинных преобразований.

Перечень учебно-методического обеспечения дисциплины

Список основной литературы:

  1. Умнов А.Е. Аналитическая геометрия и линейная алгебра. М.: МФТИ, 2011. 544 с.
  2. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – 10-е изд., испр. – М. : Физматлит, 2005. – 304 с.
  3. Сборник задач по аналитической геометрии и линейной алгебре : учебное пособие / Л. А. Беклемишева, Д. В. Беклемишев, А. Ю. Петрович, И. А. Чубаров. — 5-е изд., стер. — Санкт-Петербург : Лань, 2017. — 496 с. — ISBN 978-5-8114-0861-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/97281 (дата обращения: 25.03.2024). — Режим доступа: для авториз. пользователей.

Список дополнительной литературы:

  1. Шарипов Р.А. Курс линейной алгебры и многомерной геометрии. Учебное пособие для вузов / Издание Башкирского университета - Уфа, 1996. - 146 с.
  2. Кайгородов. В.Р. Курс аналитической геометрии и линейной алгебры. Казань. 201 с.

Необходимое программное обеспечение:

  1. Интегрированная среда разработки с поддержкой языка Python, например, Microsoft VS Code.
  2. Jupyter Notebooks

Методические указания для обучающихся по освоению дисциплины

Вид учебных
занятий/деятельности
Деятельность обучающегося
Лекция Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия.
Практические (лабораторные) занятия Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов.
Самостоятельная работа Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка презентаций. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис.
Разработка отдельных частей кода Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем.
Выполнение домашних заданий и групповых проектов Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме.
Тестирование (устное/письменное) При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части.

Методы и технологии обучения, способствующие формированию компетенции

Методы и технологии обучения, способствующие формированию компетенции
Информационно-коммуникационная технология, проектная технология, технология проблемного обучения, кейс-технология, традиционные технологии, модульные технологии