Difference between revisions of "BSc: MathematicalFoundationsOfAI"
V.matiukhin (talk | contribs) |
V.matiukhin (talk | contribs) |
||
Line 170: | Line 170: | ||
| style="width:60%" | Перечень рассматриваемых тем (вопросов)<br> |
| style="width:60%" | Перечень рассматриваемых тем (вопросов)<br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 1. || |
+ | | style="text-align:center;" | Проект 1. || Reinforcement Learning / AMDP (теоретический). || |
+ | В современном обучении с подкреплением в плане теории уже довольно много сделано. Однако для average-reward (AMDP) постановок в теории есть зазор между нижними и верхними оценками. Предлагается в целом изучить RL сквозь призму современной стох. оптимизации (см. в этой связи презентацию, прикрепленную у описанию и цитированную литературу) и сконцентрироваться именно на AMDP. Итогом здесь должно быть написание некоторого небольшого (7-10 страниц) текста-отчета (лучше всего, сделанного в оверлифе), в котором описывается state-of-the-art результаты (теоретические) по AMDP постановкам. Отмечу, что в презентации содержатся не все нужные ссылки (например, нет вот [https://arxiv.org/pdf/1906.05110.pdf этой]), и отчасти работа заключается в поиске таких теоретических работ, в которых есть интересные продвижения. |
||
− | #Построить алгоритм для приближения рациональным числом корня полинома указанной степени с целыми коэффициентами.<br> |
||
− | #Рассмотреть интерполяцию заданной функции на равномерной сетке и вычислить интеграл квадрата разности значения интерполяционного полинома и интерполируемой функции.<br> |
||
− | #Вычислить максимальное отклонение интерполируемой функции и построенного интерполяционного полинома. Проиллюстрировать явление Рунге.<br> |
||
− | #Построить набор узлов Чебышева для заданной функции построить интерполяционный полином. Вычистить интеграл от квадрата разности интерполяционного полинома Чебышева и интерполируемой функции.<br> |
||
− | #Построить частичную сумму Фурье для заданной разрывной функции и проиллюстрировать численно феномен Гиббса.<br> |
||
− | #Построить сплайн для аппроксимации заданной табличной функции с заданным дефектом.<br> |
||
− | #Построить Паде аппроксимацию заданного порядка для экспоненты.<br> |
||
− | #Построить Паде аппроксимацию заданного порядка для функции синус. <br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. || |
+ | | style="text-align:center;" | Проект 2. || Поиск вектора Page Rank.|| |
+ | Изучите статьи [https://arxiv.org/ftp/arxiv/papers/1701/1701.02595.pdf Вокруг степенного закона распределения компонент вектора PageRank], [https://arxiv.org/pdf/1508.07607.pdf Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank (тут есть пример, откуда можно брать данные)]. Попробуйте реализовать метод MCMC и еще парочку приглянувшихся методов для задачи поиска вектора PageRank. Определите, какой метод и в каком смысле лучше работает. Итогом здесь должен быть colab ноутбук с кодом и хорошими комментариями, поясняющими полученные результаты.<br> |
||
− | #Методом интегрирования по частям получить частичную сумму асимптотического при больших значениях аргумента ряда для интеграла Френеля.<br> |
||
+ | [https://github.com/HCL-271/Page_rank,%20https://colab.research.google.com/drive/1XZPBAG0CrPeNP5TdIMXr0vtigS2L3JDU?usp=sharing Примеры сделанного проекта] |
||
− | #Оценить величину остатка ряда в зависимости от количества членов ряда и от аргумента функции Френеля.<br> |
||
− | #Основываясь на интегральном представлении Гамма-функции получить частичную сумму асимптотического ряда при больших значениях аргумента Гамма-функции. Исследовать относительную погрешность формулы Муавра-Стирлинга.<br> |
||
− | #Просуммировать по Чезаро расходящийся знакопеременный ряд.<br> |
||
− | #Найти сумму по Борелю для расходящегося ряда.<br> |
||
− | #Показать, что суммирование по Чезаро и по Борелю дают одинаковые результаты, если эти сумму существуют.<br> |
||
− | #Указать калибровочную последовательность для функции Эйри при построении асимптотики вблизи бесконечно удаленной точки.<br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. || |
+ | | style="text-align:center;" | Проект 3. ||Градиентный клиппинг.|| |
+ | Посмотрите вот это [https://www.mathnet.ru/php/seminars.phtml?option_lang=rus&presentid=35797. видео]. В различных моделях обучения возникают задачи стохастической оптимизации, в которых у градиентов имеются тяжелые хвосты. Для лучшей практической работы стандартных методов типа SGD и их моментных вариантов используется клиппирование (пробатченного) стохастического градиента. Такой проект мы делали летом 2022 года со школьниками в Сириусе. В результате было сделано следующее (стоит делать поправку, что это делали школьники 8-10 классов): <br> |
||
− | #Вычислить фрактальную размерность жирного множества Кантора.<br> |
||
+ | ::[https://bigchallenges.ru/clipping Лендинг]<br> |
||
− | #Вычислить фрактальную размерность салфетки Серпинского.<br> |
||
+ | ::[https://github.com/EugGolovanov/TorchClippedOptimizers GitHub]<br> |
||
− | #Построить алгоритм для вычисления фрактальной размерности множества Мандельброта.<br> |
||
+ | ::[https://pypi.org/project/torch-clip/ PyPi]<br> |
||
− | #Построить алгоритм для вычисления фрактальной размерности множества Жулиа.<br> |
||
+ | ::Флайер <br> |
||
− | #Найти численное приближение.<br> |
||
+ | Оказывается, для выпуклых задач есть довольно симпатичная математика, стоящая за всем этим: [https://arxiv.org/pdf/2106.05958.pdf Near-Optimal High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise], [https://arxiv.org/pdf/2206.01095.pdf Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise] (совсем идейно это описано в самом начале презентации, прикрепленной к описанию). <br> |
||
− | |} |
||
+ | Проект практический и заключается в подборе новых примеров (классов) задач обучения (в том числе состязательного обучения), на которых клиппированные методы работают лучше неклипированных. На самом деле, чтобы не заниматься перебором, как раз важно понять, какой эффект дает клипирование и в каких ситуациях это все может себя проявить. Естественно, на практике размер клипа и батча, возможно, придется подбирать не совсем так как в теории, но в целом, некоторые общие закономерности теоретические результаты дают, по-видимому, правильные, и разумно это использовать, чтобы сократить перебор в подборе этих параметров. |
||
− | '''Текущий контроль успеваемости обучающихся по дисциплине:''' |
||
− | {| class="wikitable" style="width:70%;" |
||
− | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
− | | style="width:5%" | №<br>п/п |
||
− | | style="width:20%" | Наименование раздела<br>дисциплины |
||
− | | style="width:25%" | Форма текущего контроля<br><br> |
||
− | | style="width:50%" | Материалы текущего контроля<br><br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | |
+ | | style="text-align:center;" | Проект 4. ||Градиентный клиппинг.|| |
+ | В цикле статей Вершика-Синая-Арнольда исследуются различные предельные формы (например, диаграмм Юнга, выпуклых ломаных и т.п.). Вообще, все это очень красиво, и в своей основе имеет целый ряд фундаментальных законов природы, проявляющихся и в целом ряде других областей. Например, в статистической физике. Для погружения в данную проблематику можно рекомендовать [https://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=231 мини-курс А.М. Вершка из трех лекций]. Некоторые такие примеры разобраны в [https://arxiv.org/pdf/1508.03461.pdf книге] (см. также цитированную там литературу). Искать можно как раз по фамилиям (Вершик, Синай). Целью данного проекта является разбор того, почему имеет место наблюдение, описанное в скрине. В результате работы над проектом должен появиться текст, обосновывающий результат со скрина.<br> |
||
− | | Элементы теории аппроксимации. |
||
+ | [[File:q1.png]] |
||
− | | style="text-align:center;" | Разработка кода для иллюстрации теоретических положений раздела. |
||
− | | Выбрать одну из задач для практических заданий и написать программу для решений такой задачи.<br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | |
+ | | style="text-align:center;" | Проект 5. ||Как зародилась жизнь? Генетические алгоритмы, Мир РНК.|| |
+ | Вопрос «как зародилась жизнь?» давно привлекает к себе внимание ученых из разных областей. Текущее понимание этого вопроса изложено в замечательной книге А.А. Маркова «Рождение сложности». Хотя до сих пор нет одной какой-то общепринятой точки зрения, но все же наиболее популярна гипотеза о том, что жизнь могла зародиться из самокопирующихся молекул РНК (гипотеза РНК мира). Обоснование гипотезы требует проработки разных (в том числе чисто математических) вопросов. Замечательно здесь и то, что можно пойти и в обратном направлении (а именно, эволюция/естественный отбор может подсказать способ решения той или иной сложной задачи оптимизации, функционал которой интерпретируется как приспособленность). Собственно, это и предлагается сделать. Решите задачу [https://arxiv.org/pdf/1508.03461.pdf 16 на стр. 175-176]. Требуется математически строго обосновать решение и подкрепить теорию результатами численных экспериментов. |
||
− | | Расходящиеся ряды. |
||
− | | style="text-align:center;" | Разработка кода для иллюстрации теоретических положений раздела. |
||
− | | Выбрать одну из задач для практических заданий и написать программу для решений такой задачи.<br> |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 6. ||Вокруг методов Монте-Карло, в том числе с приложениями к финансовой математике.|| |
||
− | | style="text-align:center;" | 3. |
||
+ | Посмотрите [https://www.mathnet.ru/php/seminars.phtml?option_lang=rus&presentid=6060 часть 1] и [https://www.mathnet.ru/php/seminars.phtml?presentid=6774&option_lang=rus часть 2] видео «В окрестностях Монте-Карло» и попробуйте на базе прослушанного предложить какие-то свои вариации классических методов. Проект очень неопределенный. Это сделано специально, чтобы дать больше свободы творчества. Также было бы здорово обратить внимание, что для целого ряда вещей совсем не нужна первозданно случайная последовательность. В частности, на практике эффективными оказываются так называемы квази Монте-Карловские методы, под которые есть [https://web.archive.org/web/20210508093913/https://blogs.princeton.edu/imabandit/2014/12/22/guest-post-by-sasho-nikolov-beating-monte-carlo/ хорошая теория].<br> |
||
− | | Анализ на многообразиях нецелой размерности. |
||
+ | |||
− | | style="text-align:center;" | Разработка кода для иллюстрации теоретических положений раздела. |
||
+ | Цель данного проекта — знакомство с современными приложениями методов Монте-Карло. В частности, для тех, кто хочет посмотреть в сторону финансовой математике можно рекомендовать в качестве проекта выбрать Multi-level Monte Carlo. А именно, проект заключается в том, чтобы аккуратно обосновать (с нужной теорией и желательно демонстрацией на практике) то, что написано в условиях [https://arxiv.org/pdf/1508.03461.pdf задачи 22 на стр. 204-205]. Для погружения в финансовую математику есть [https://zlibrary.org/book/1131868/99d503 очень доступный курс]. |
||
− | | Выбрать одну из задач для практических заданий и написать программу для решений такой задачи.<br> |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 7. ||Ранняя остановка или регуляризация.|| |
||
+ | Одной из главных проблем машинного обучения является переобучение. Это давно и хорошо известно, и много чего в этой связи было сделано. Если совсем кратко резюмировать, то для задач обучения с выпуклым целевым функционалом (логистическая регрессия, SVM, LASSO, …) основные способы борьбы с переобучением — это регуляризация или ранняя остановка процедур типа SGD. На базе первой главы книги по Алгоритмической стох. оптимизации (ссылка здесь дублируется - имеется в прикрепленном сообщении) попробуйте сделать обзор описанных двух подходов и продемонстрируйте как все это работает на практике. В чем преимущества и недостатки этих двух подходов друг перед другом? Итогом работы по проекту должен стать текст + эксперименты. То есть в этом проекте важны обе составляющие (практическая и теоретическая). |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 8. ||Модели распространения эпидемий, в частности, ковид как модель стохастической химической кинетики.|| |
||
+ | Изучите [https://arxiv.org/pdf/1508.03461.pdf. главу 6]. В частности, модель Эренфестов, модель хищник-жертва и ее распределенные варианты. Попробуйте на базе похожего формализма получить систему дифференциальных уравнений [https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology SIR-типа моделей] и предложите свои обобщения. Для дополнительной мотивации можно посмотреть [https://www.youtube.com/watch?v=gxAaO2rsdIs&t=1s&ab_channel=3Blue1Brown мультфильм].<br> |
||
+ | Результатом работы по проекту может быть описание микроскопической динамики, которая в макромасштабе описывается чем-то типа SIR-моделей или их обобщений. При этом обоснование должно быть как теоретическое, так и практическое. |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 9. ||Почему зависимости частот катастроф от их масштабов имеют степенной закон?|| |
||
+ | Изучите задачу Д. Кьялво [https://arxiv.org/pdf/1508.03461.pdf (задача 12 на стр. 170-171)]. Попробуйте не только экспериментально проверить то о чем написано в задаче (естественно, в большем масштабе, чем было в эксперименте, который делал Д. Кьялво над своими студентами), но и обосновать это теоретически. Проект также включает в себя текст, с теоретической проработкой, и эксперименты. |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 10. ||Почему большинство крупных мегаполисов живут в режиме пробок, фазовый переход в сетях массового обслуживания.|| |
||
+ | Этот проект совершенно реален (то есть идею этого проекта воплотили в жизнь при планировании развития сети общественного транспорта в г. Москве за последние 10-15 лет). Вот [https://elementy.ru/nauchno-populyarnaya_biblioteka/431798/Kak_borotsya_s_probkami краткое описание проблематики] (ключевой тут рис. 1). Немного есть про это вот в этом [https://vk.com/video-135454514_456242213 видео] (в концовке как раз об этом, впрочем, начало тоже интересное, но не об этом). Речь идет о том, что большинство крупных мегаполисов живут в режимах, когда есть и много пробок. Почему это так? Математическое объяснение есть в [http://www.mou.mipt.ru/gasnikov1129.pdf книге] (см. приложение Малышева-Замятина). Собственно, эта тема дальше развивается в Исследовательской задаче (такой раздел есть в книге) «Задача о критическом числе автомобилей для заданного города». Предложите свой вариант такого типа задачи и получите практическое подтверждение наличия фазового перехода. Проект практический. |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 11. ||Четыре рукопожатия и как это посчитать?|| |
||
+ | В замечательной [https://zlibrary.org/book/3389327/273068 книге Райгородского-Литвак] совсем по-простому рассказано о том, как современные социальные сети решают различные задачи подсчета (см. сюжет из Главы 7 Счетчики с короткой памятью и в частности Четыре виртуальных рукопожатия). Попробуйте разобрать пример из статьи Себастьяна Виньи на более продвинутом уровне чем в популярной книге Райгородского-Литвак. В частности, помочь может вот эта [https://www.cs.cornell.edu/jeh/book%20no%20so;utions%20March%202019.pdf. книга]. Цель проекта продемонстрировать математику, которая есть вокруг этого сюжета (в частности, хеширование). Проект теоретический, но чтобы получить по нему хорошую оценку нужно либо довольно тонко освоить теорию, либо провести достаточно понятные эксперименты, подтверждающие теорию... |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 12. ||Межгрупповая вражда способствует внутригрупповому сотрудничеству.|| |
||
+ | В другой интересной книге [https://readingbook.ru/humanities/1055-evolyuciya-cheloveka-v-2-knigah-kniga-2-obezyany-neyrony-i-dusha.html А.А. Маркова] в главе 5 есть параграф, который называется так как этот проект. Прочитайте параграф, постарайтесь понять о чем идет речь. В параграфе описывается некоторое равновесие макросистемы. Попробуйте придумать каку-то разумную динамику, которая бы приводила к такому равновесию (соответствующие заготовки могут быть почерпнуты из 6 главы [https://arxiv.org/pdf/1508.03461.pdf книги]). Нужно не только придумать, подтвердить экспериментально, но и попробовать математически обосновать, что предложенная динамика, действительно, выходит на нужное равновесие… |
||
+ | |||
+ | P.S. В целом, очень рекомендую эту книгу Маркова, если есть желание получше разобраться как устроены люди. Кажется, в этой книге есть и много других интересных сюжетов (например, парадокс Симпсона, теория Гамильтона — родственного отбора, и многое другое), которые, по-видимому, качественно улавливают какие-то закономерности, управляющие поведением людей. |
||
+ | |||
+ | По итогам этого проекта появилась [https://nauka.tass.ru/nauka/16928303?utm_source=tass.ru&utm_medium=referral&utm_campaign=tass.ru&utm_referrer=tass.ru статья]. |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 13. ||Градиентный клиппинг.|| |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 14. ||Градиентный клиппинг.|| |
||
+ | |||
+ | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | Проект 15. ||Градиентный клиппинг.|| |
||
|} |
|} |
||
Line 231: | Line 248: | ||
=== Перечень учебно-методического обеспечения дисциплины === |
=== Перечень учебно-методического обеспечения дисциплины === |
||
Список основной литературы:<br> |
Список основной литературы:<br> |
||
+ | 1. Blum A., Hopcroft J., Kannan R. Foundations of data science. – Cambridge University Press, 2020.<br> |
||
+ | 2. Bach F. Learning Theory from First Principles. – 2021.<br> |
||
+ | 3. Тыртышников Е. Е. Методы численного анализа. – 2007.<br> |
||
+ | 4. Зорич В. Математический анализ задач естествознания. – Litres, 2018.<br> |
||
+ | |||
+ | Список дополнительной литературы:<br> |
||
1. Гyдфеллоy Я., Бенджио И., Кyрвилль А. Глyбокое обyчение. 2-е изд., исправл. М.: ДМК-Пресс, 2018.<br> |
1. Гyдфеллоy Я., Бенджио И., Кyрвилль А. Глyбокое обyчение. 2-е изд., исправл. М.: ДМК-Пресс, 2018.<br> |
||
2. Shapiro A., Dentcheva D., Ruszczyński A. Lectures on stochastic programming: modeling and theory. – Society for Industrial and Applied Mathematics, 2014.<br> |
2. Shapiro A., Dentcheva D., Ruszczyński A. Lectures on stochastic programming: modeling and theory. – Society for Industrial and Applied Mathematics, 2014.<br> |
||
Line 241: | Line 264: | ||
9. Shen A., Romashchenko A., Rumyantsev A. Y. Заметки по теории кодирования. – 2017.<br> |
9. Shen A., Romashchenko A., Rumyantsev A. Y. Заметки по теории кодирования. – 2017.<br> |
||
10. Vershynin R. High-dimensional probability: An introduction with applications in data science. – Cambridge university press, 2018. – Т. 47.<br> |
10. Vershynin R. High-dimensional probability: An introduction with applications in data science. – Cambridge university press, 2018. – Т. 47.<br> |
||
− | |||
− | Список дополнительной литературы:<br> |
||
− | #Glebov S.G., Kiselev O.M., Tarkhanov N., Nonlinear equations with small parameter. Volume I: Oscillations and resonances De Gruyter Series in Nonlinear Analysis and Applications. 2017, v. 23/1, pp.340.<br> |
||
− | #Лутц М., Изучаем Python: Т. 1, 2, Издательство Диалектика, 2023, ISBN 9785521805532<br> |
||
− | #Beazley D., Jones B.K. Python Cookbook, 3rd Edition by 2013 Publisher(s): O'Reilly Media, Inc. ISBN: 9781449357351<br> |
||
=== Методические указания для обучающихся по освоению дисциплины === |
=== Методические указания для обучающихся по освоению дисциплины === |
||
Line 261: | Line 279: | ||
| style="vertical-align:middle; text-align:center;" | Устный/письменный опрос |
| style="vertical-align:middle; text-align:center;" | Устный/письменный опрос |
||
| style="vertical-align:middle; text-align:left;" | Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части. |
| style="vertical-align:middle; text-align:left;" | Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Реферат |
||
− | | style="vertical-align:middle; text-align:left;" | Поиск источников и литературы, составление библиографии. При написании реферата рекомендуется использовать разнообразные источники, монографии и статьи из научных журналов, позволяющие глубже разобраться в различных точках зрения на заданную тему. Изучение литературы следует начинать с наиболее общих трудов, затем следует переходить к освоению специализированных исследований по выбранной теме. Могут быть использованы ресурсы сети «Интернет» с соответствующими ссылками на использованные сайты.<br>Если тема содержит проблемный вопрос, следует сформулировать разные точки зрения на него. Рекомендуется в выводах указать свое собственное аргументированное мнение по данной проблеме. Подготовить презентацию для защиты реферата. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Эссе |
||
− | | style="vertical-align:middle; text-align:left;" | Написание прозаического сочинения небольшого объема и свободной композиции, выражающего индивидуальные впечатления и соображения по конкретному поводу или вопросу и заведомо не претендующего на определяющую или исчерпывающую трактовку предмета. При работе над эссе следует четко и грамотно формулировать мысли, структурировать информацию, использовать основные понятия, выделять причинно-следственные связи. Как правило эссе имеет следующую структуру: вступление, тезис и аргументация его, заключение. В качестве аргументов могут выступать исторические факты, явления общественной жизни, события, жизненные ситуации и жизненный опыт, научные доказательства, ссылки на мнение ученых и др. |
||
|- |
|- |
||
| style="vertical-align:middle; text-align:center;" | Подготовка к промежуточной аттестации |
| style="vertical-align:middle; text-align:center;" | Подготовка к промежуточной аттестации |
||
Line 276: | Line 288: | ||
| style="vertical-align:middle; text-align:center;" | Самостоятельная работа |
| style="vertical-align:middle; text-align:center;" | Самостоятельная работа |
||
| style="vertical-align:middle; text-align:left;" | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
| style="vertical-align:middle; text-align:left;" | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Видеопрезентация |
||
− | | style="vertical-align:middle; text-align:left;" | Подготовка видеопрезентаций по курсу. Видеопрезентации могут быть сделаны на любую тему, затронутую в ходе курса. Темы должны быть заранее согласованы с преподавателем. Видеопрезентации продолжительностью около 5 минут (300 секунд) должны быть подготовлены в группах, определяемых преподавателем. Несмотря на то, что это групповая работа, должен явно присутствовать вклад каждого члена группы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Доклад |
||
− | | style="vertical-align:middle; text-align:left;" | Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Дискуссия |
||
− | | style="vertical-align:middle; text-align:left;" | Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию. |
||
|- |
|- |
||
| style="vertical-align:middle; text-align:center;" | Контрольная работа |
| style="vertical-align:middle; text-align:center;" | Контрольная работа |
||
| style="vertical-align:middle; text-align:left;" | При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. |
| style="vertical-align:middle; text-align:left;" | При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Тестирование (устное/письменное) |
||
− | | style="vertical-align:middle; text-align:left;" | При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части. |
||
|- |
|- |
||
| style="vertical-align:middle; text-align:center;" | Индивидуальная работа |
| style="vertical-align:middle; text-align:center;" | Индивидуальная работа |
||
| style="vertical-align:middle; text-align:left;" | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
| style="vertical-align:middle; text-align:left;" | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center;" | Разработка отдельных частей кода |
||
− | | style="vertical-align:middle; text-align:left;" | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
||
|- |
|- |
||
| style="vertical-align:middle; text-align:center;" | Выполнение домашних заданий и групповых проектов |
| style="vertical-align:middle; text-align:center;" | Выполнение домашних заданий и групповых проектов |
||
Line 310: | Line 307: | ||
<u> Проблемно-ориентированное обучение </u> – мероприятия по решению проблем, которые побуждают студентов применять концепции квантовых вычислений в практических ситуациях. Этот метод может улучшить навыки критического мышления и закрепления знаний. |
<u> Проблемно-ориентированное обучение </u> – мероприятия по решению проблем, которые побуждают студентов применять концепции квантовых вычислений в практических ситуациях. Этот метод может улучшить навыки критического мышления и закрепления знаний. |
||
− | Будут применяться <u> программные библиотеки для аналитических и численных методов: SymPy, NumPy, и SciPy </u>, что позволит использовать компьютер как инструмент для изучения свойств аналитических функции, изучать теорию аппроксимаций и получить опыт использования компьютерных вычислений в задачах математического анализа. |
||
Планируется предложить <u> совместные проекты </u>, которые требуют применения концепций квантовых вычислений в реальных сценариях или создания новых квантовых алгоритмов. Такой подход может способствовать командной работе, навыкам общения и креативности, одновременно углубляя понимание студентами концепций квантовых вычислений. |
Планируется предложить <u> совместные проекты </u>, которые требуют применения концепций квантовых вычислений в реальных сценариях или создания новых квантовых алгоритмов. Такой подход может способствовать командной работе, навыкам общения и креативности, одновременно углубляя понимание студентами концепций квантовых вычислений. |
Revision as of 22:46, 2 April 2024
Математические основы искуственного интеллекта
- Квалификация выпускника: бакалавр
- Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
- Направленность (профиль) образовательной программы: Математические основы ИИ
- Программу разработал(а):
1. Краткая характеристика дисциплины
Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в следующих областях знаний:
Явление концентрации меры. Начиная с классических результатов Гаусса, Максвелла, Пуанкаре, Леви, Мильмана, планируется постепенно перейти к современным результатам и приложениям, в том числе, возникающим в разнообразных задачах анализа данных.
Численные методы решения задач (выпуклой) стохастической оптимизации в пространствах больших размеров. Такие задачи часто возникают в разнообразных приложениях, в том числе в анализе данных — принцип максимального правдоподобия в статистике, минимизация риска в машинном обучении.
Классическая теорема о SVD-разложении и ее различные обобщения будут продемонстрированы в приложениях к данным, хранящимся в многомерных массивах.
2. Перечень планируемых результатов обучения
- Целью освоения дисциплины является обучение студентов с соответствующей математикой, что впоследствии должно помочь им в изучении специализированных разделов анализа данных (машинного обучения, статистики, обучения с подкреплением, численных методов оптимизации, моделирования больших сетей и т.д.).
- Задачами дисциплины являются ...
Общая характеристика результата обучения по дисциплине
- Знания: после прохождения курса у студентов должны быть сформированы .
- Умения: сформированы умения .
- Навыки (владения): в результате прохождения курса формируются навыки .
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | Вокруг задач поиска вектора PageRank. |
1 часть (Google problem) изложена в учебном пособии (Б. Вектор PageRank и Google Problem) |
2. | Элементы теории случайных процессов. |
1. Классические вопросы, связанные с методом Монте-Карло (вычисление площади, интеграла, Hit and run алгоритм).
2. Введение в эргодические динамические системы и эргодические случайные процессы (поворот окружности, сдвиг Бернулли, цепные дроби, восстановления с помощью эргодической теоремы параметра сноса по достаточно длинной траектории геометрического броуновского движения - процесса Башелье-Самуэльсона).
3. Основные классы случайных процессов (Мартингалы и безарбитражный рынок ценных бумаг, процессы Леви (Винеровский процесс как диффузионный предел случайных блужданий, Пуассоновский, сложный Пуассоновский), безгранично-делимые распределения).
|
3. | Вокруг Центральной предельной теоремы. |
1. Центральная предельная теорема для схемы i.i.d. и ее доказательство с помощью аппарата характеристических функций. Схема рассуждений была взята из книги Розанов Ю.А. Лекции по теории вероятностей. Изд. 3, 2008. 136 с. |
4. | Стохастические дифференциальные уравнения и методы Монте-Карло, Стохастический градиентный спуск. |
1. Условное математическое ожидание. Гильбертово пространство квадратично-интегрируемых случайных величин. Получение характеристической функции сложного Пуассоновского процесса с помощью формулы полного математического ожидания. Случайные процессы. под ред. А.В. Гасникова. |
5. | Вокруг стохастического градиентного спуска. |
1. Неравенство Азума-Хефдинга 3. Клиппирование, использование неравенства Бернштейна-Фридмана. |
6. | Концентрация меры. |
1. Метод Лапласа (исследование асимптотики интеграла по параметру), обоснование формулы Стирлинга.
2. Концентрация меры на сфере.
3. Случайные перестановки и их свойства
5. Неравенство Талаграна (просто упоминание)
6. Теорема Джонсона-Линденштраусса.
7. Вероятностная проверка тождеств.
|
7. | Большие системы (макросистемы). |
1. Теорема Клартага (только формулировка)
2. Предельные формы (диаграммы Юнга, Ричардсона, выпуклые ломаные)
3. Модели роста сетей (типа интернета) на принципе предпочтительного присоединения
4. Эволюция РНК и генетические алгоритмы
5. Время достижения ускоренного консенсуса снизу оценивается диаметром графа и квадрат этого времени отвечает времени выхода сопряженной марковской цепи на стационарное (инвариантное) распределение
6. Распределение ошибок при решении систем линейных уравнений
7. Равновесия макросистем, как аттракторы в моделях стохастической химической кинетики. Пример «Кинетика социального неравенства»
8. Метод перевала. Элементы ТФКП. Формула Коши. Получение оценок больших уклонений (теорема Крамера) с помощью метода перевала.
9. Игрушечная модель эволюции Д. Кьялво - степенной закон распределения частоты лавин от длительности (связь с временем первого возвращения случайного блуждания)
|
8. | Машинное обучение с точки зрения стохастической оптимизации. |
1. Multilevel Monte Carlo
|
9. | Распределенная оптимизация. |
1. Методы распределенной оптимизации, использующие сжатие |
10. | Математика больших данных в теории информации. |
1. Основные определения теории информации: энтропия и взаимная информация
|
11. | Малоранговая аппроксимация матриц. |
1.Скелетное и сингулярное разложения матриц. |
12. | Малоранговая аппроксимация тензоров. |
1.Каноническое разложение. |
13. | Математика обучения с подкреплением. |
1. Базовые понятия: марковский процесс принятия решений, уравнения Беллмана, онлайн обучение с подкреплением и регрет. Похожее изложение |
4. Методические и оценочные материалы
Задания для практических занятий:
№ п/п |
Наименование раздела дисциплины (модуля) |
Перечень рассматриваемых тем (вопросов) |
Проект 1. | Reinforcement Learning / AMDP (теоретический). |
В современном обучении с подкреплением в плане теории уже довольно много сделано. Однако для average-reward (AMDP) постановок в теории есть зазор между нижними и верхними оценками. Предлагается в целом изучить RL сквозь призму современной стох. оптимизации (см. в этой связи презентацию, прикрепленную у описанию и цитированную литературу) и сконцентрироваться именно на AMDP. Итогом здесь должно быть написание некоторого небольшого (7-10 страниц) текста-отчета (лучше всего, сделанного в оверлифе), в котором описывается state-of-the-art результаты (теоретические) по AMDP постановкам. Отмечу, что в презентации содержатся не все нужные ссылки (например, нет вот этой), и отчасти работа заключается в поиске таких теоретических работ, в которых есть интересные продвижения. |
Проект 2. | Поиск вектора Page Rank. |
Изучите статьи Вокруг степенного закона распределения компонент вектора PageRank, Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank (тут есть пример, откуда можно брать данные). Попробуйте реализовать метод MCMC и еще парочку приглянувшихся методов для задачи поиска вектора PageRank. Определите, какой метод и в каком смысле лучше работает. Итогом здесь должен быть colab ноутбук с кодом и хорошими комментариями, поясняющими полученные результаты. |
Проект 3. | Градиентный клиппинг. |
Посмотрите вот это видео. В различных моделях обучения возникают задачи стохастической оптимизации, в которых у градиентов имеются тяжелые хвосты. Для лучшей практической работы стандартных методов типа SGD и их моментных вариантов используется клиппирование (пробатченного) стохастического градиента. Такой проект мы делали летом 2022 года со школьниками в Сириусе. В результате было сделано следующее (стоит делать поправку, что это делали школьники 8-10 классов): Оказывается, для выпуклых задач есть довольно симпатичная математика, стоящая за всем этим: Near-Optimal High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise, Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise (совсем идейно это описано в самом начале презентации, прикрепленной к описанию). |
Проект 4. | Градиентный клиппинг. |
В цикле статей Вершика-Синая-Арнольда исследуются различные предельные формы (например, диаграмм Юнга, выпуклых ломаных и т.п.). Вообще, все это очень красиво, и в своей основе имеет целый ряд фундаментальных законов природы, проявляющихся и в целом ряде других областей. Например, в статистической физике. Для погружения в данную проблематику можно рекомендовать мини-курс А.М. Вершка из трех лекций. Некоторые такие примеры разобраны в книге (см. также цитированную там литературу). Искать можно как раз по фамилиям (Вершик, Синай). Целью данного проекта является разбор того, почему имеет место наблюдение, описанное в скрине. В результате работы над проектом должен появиться текст, обосновывающий результат со скрина. |
Проект 5. | Как зародилась жизнь? Генетические алгоритмы, Мир РНК. |
Вопрос «как зародилась жизнь?» давно привлекает к себе внимание ученых из разных областей. Текущее понимание этого вопроса изложено в замечательной книге А.А. Маркова «Рождение сложности». Хотя до сих пор нет одной какой-то общепринятой точки зрения, но все же наиболее популярна гипотеза о том, что жизнь могла зародиться из самокопирующихся молекул РНК (гипотеза РНК мира). Обоснование гипотезы требует проработки разных (в том числе чисто математических) вопросов. Замечательно здесь и то, что можно пойти и в обратном направлении (а именно, эволюция/естественный отбор может подсказать способ решения той или иной сложной задачи оптимизации, функционал которой интерпретируется как приспособленность). Собственно, это и предлагается сделать. Решите задачу 16 на стр. 175-176. Требуется математически строго обосновать решение и подкрепить теорию результатами численных экспериментов. |
Проект 6. | Вокруг методов Монте-Карло, в том числе с приложениями к финансовой математике. |
Посмотрите часть 1 и часть 2 видео «В окрестностях Монте-Карло» и попробуйте на базе прослушанного предложить какие-то свои вариации классических методов. Проект очень неопределенный. Это сделано специально, чтобы дать больше свободы творчества. Также было бы здорово обратить внимание, что для целого ряда вещей совсем не нужна первозданно случайная последовательность. В частности, на практике эффективными оказываются так называемы квази Монте-Карловские методы, под которые есть хорошая теория. Цель данного проекта — знакомство с современными приложениями методов Монте-Карло. В частности, для тех, кто хочет посмотреть в сторону финансовой математике можно рекомендовать в качестве проекта выбрать Multi-level Monte Carlo. А именно, проект заключается в том, чтобы аккуратно обосновать (с нужной теорией и желательно демонстрацией на практике) то, что написано в условиях задачи 22 на стр. 204-205. Для погружения в финансовую математику есть очень доступный курс. |
Проект 7. | Ранняя остановка или регуляризация. |
Одной из главных проблем машинного обучения является переобучение. Это давно и хорошо известно, и много чего в этой связи было сделано. Если совсем кратко резюмировать, то для задач обучения с выпуклым целевым функционалом (логистическая регрессия, SVM, LASSO, …) основные способы борьбы с переобучением — это регуляризация или ранняя остановка процедур типа SGD. На базе первой главы книги по Алгоритмической стох. оптимизации (ссылка здесь дублируется - имеется в прикрепленном сообщении) попробуйте сделать обзор описанных двух подходов и продемонстрируйте как все это работает на практике. В чем преимущества и недостатки этих двух подходов друг перед другом? Итогом работы по проекту должен стать текст + эксперименты. То есть в этом проекте важны обе составляющие (практическая и теоретическая). |
Проект 8. | Модели распространения эпидемий, в частности, ковид как модель стохастической химической кинетики. |
Изучите главу 6. В частности, модель Эренфестов, модель хищник-жертва и ее распределенные варианты. Попробуйте на базе похожего формализма получить систему дифференциальных уравнений SIR-типа моделей и предложите свои обобщения. Для дополнительной мотивации можно посмотреть мультфильм. |
Проект 9. | Почему зависимости частот катастроф от их масштабов имеют степенной закон? |
Изучите задачу Д. Кьялво (задача 12 на стр. 170-171). Попробуйте не только экспериментально проверить то о чем написано в задаче (естественно, в большем масштабе, чем было в эксперименте, который делал Д. Кьялво над своими студентами), но и обосновать это теоретически. Проект также включает в себя текст, с теоретической проработкой, и эксперименты. |
Проект 10. | Почему большинство крупных мегаполисов живут в режиме пробок, фазовый переход в сетях массового обслуживания. |
Этот проект совершенно реален (то есть идею этого проекта воплотили в жизнь при планировании развития сети общественного транспорта в г. Москве за последние 10-15 лет). Вот краткое описание проблематики (ключевой тут рис. 1). Немного есть про это вот в этом видео (в концовке как раз об этом, впрочем, начало тоже интересное, но не об этом). Речь идет о том, что большинство крупных мегаполисов живут в режимах, когда есть и много пробок. Почему это так? Математическое объяснение есть в книге (см. приложение Малышева-Замятина). Собственно, эта тема дальше развивается в Исследовательской задаче (такой раздел есть в книге) «Задача о критическом числе автомобилей для заданного города». Предложите свой вариант такого типа задачи и получите практическое подтверждение наличия фазового перехода. Проект практический. |
Проект 11. | Четыре рукопожатия и как это посчитать? |
В замечательной книге Райгородского-Литвак совсем по-простому рассказано о том, как современные социальные сети решают различные задачи подсчета (см. сюжет из Главы 7 Счетчики с короткой памятью и в частности Четыре виртуальных рукопожатия). Попробуйте разобрать пример из статьи Себастьяна Виньи на более продвинутом уровне чем в популярной книге Райгородского-Литвак. В частности, помочь может вот эта книга. Цель проекта продемонстрировать математику, которая есть вокруг этого сюжета (в частности, хеширование). Проект теоретический, но чтобы получить по нему хорошую оценку нужно либо довольно тонко освоить теорию, либо провести достаточно понятные эксперименты, подтверждающие теорию... |
Проект 12. | Межгрупповая вражда способствует внутригрупповому сотрудничеству. |
В другой интересной книге А.А. Маркова в главе 5 есть параграф, который называется так как этот проект. Прочитайте параграф, постарайтесь понять о чем идет речь. В параграфе описывается некоторое равновесие макросистемы. Попробуйте придумать каку-то разумную динамику, которая бы приводила к такому равновесию (соответствующие заготовки могут быть почерпнуты из 6 главы книги). Нужно не только придумать, подтвердить экспериментально, но и попробовать математически обосновать, что предложенная динамика, действительно, выходит на нужное равновесие… P.S. В целом, очень рекомендую эту книгу Маркова, если есть желание получше разобраться как устроены люди. Кажется, в этой книге есть и много других интересных сюжетов (например, парадокс Симпсона, теория Гамильтона — родственного отбора, и многое другое), которые, по-видимому, качественно улавливают какие-то закономерности, управляющие поведением людей. По итогам этого проекта появилась статья. |
Проект 13. | Градиентный клиппинг. | |
Проект 14. | Градиентный клиппинг. | |
Проект 15. | Градиентный клиппинг. |
Контрольные вопросы для подготовки к промежуточной аттестации:
Для ознакомления доступна контрольная работа
Перечень учебно-методического обеспечения дисциплины
Список основной литературы:
1. Blum A., Hopcroft J., Kannan R. Foundations of data science. – Cambridge University Press, 2020.
2. Bach F. Learning Theory from First Principles. – 2021.
3. Тыртышников Е. Е. Методы численного анализа. – 2007.
4. Зорич В. Математический анализ задач естествознания. – Litres, 2018.
Список дополнительной литературы:
1. Гyдфеллоy Я., Бенджио И., Кyрвилль А. Глyбокое обyчение. 2-е изд., исправл. М.: ДМК-Пресс, 2018.
2. Shapiro A., Dentcheva D., Ruszczyński A. Lectures on stochastic programming: modeling and theory. – Society for Industrial and Applied Mathematics, 2014.
3. Shalev-Shwartz S., Ben-David S. Understanding machine learning: From theory to algorithms. – Cambridge university press, 2014.
4. Bubeck S. Convex optimization: Algorithms and complexity // Foundations and Trends® in Machine Learning Volume 8 Issue 3-411 pp 231–357. – 2015.
5. Duchi J. C. Introductory lectures on stochastic optimization // The mathematics of data. – 2018. – V. 25. – P. 99-185.
6. Hazan E. Lecture notes: Optimization for machine learning // arXiv preprint arXiv:1909.03550. – 2019.
7. Lan G. First-order and Stochastic Optimization Methods for Machine Learning. – Springer Nature, 2020.
8. Milman V. D. The heritage of P. Lévy in geometrical functional analysis //Astérisque. – 1988. – Т. 157. – №. 158. – С. 273-301.
9. Shen A., Romashchenko A., Rumyantsev A. Y. Заметки по теории кодирования. – 2017.
10. Vershynin R. High-dimensional probability: An introduction with applications in data science. – Cambridge university press, 2018. – Т. 47.
Методические указания для обучающихся по освоению дисциплины
Вид учебных занятий/деятельности |
Деятельность обучающегося |
Лекция | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
Практическое (семинарское) занятие | При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его. Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы. |
Устный/письменный опрос | Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части. |
Подготовка к промежуточной аттестации | При подготовке к промежуточной аттестации необходимо проработать вопросы по темам, которые рекомендуются для самостоятельной подготовки. При возникновении затруднений с ответами следует ориентироваться на конспекты лекций, семинаров, рекомендуемую литературу, материалы электронных и информационных справочных ресурсов, статей. Если тема вызывает затруднение, четко сформулировать проблемный вопрос и задать его преподавателю. |
Практические (лабораторные) занятия | Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов. |
Самостоятельная работа | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Контрольная работа | При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. |
Индивидуальная работа | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
Выполнение домашних заданий и групповых проектов | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
Методы и технологии обучения, способствующие формированию компетенции
Методы и технологии обучения, способствующие формированию компетенции |
В курсе планируется использовать несколько технологий обучения. Таких как: интерактивные лекции , поощряющие участие студентов посредством сессий вопросов и ответов, живых демонстраций концепций квантовых вычислений или групповых дискуссий.
Проблемно-ориентированное обучение – мероприятия по решению проблем, которые побуждают студентов применять концепции квантовых вычислений в практических ситуациях. Этот метод может улучшить навыки критического мышления и закрепления знаний.
Важный элемент курса – смешанное обучение : сочетание традиционного очного обучения с онлайн-учебными ресурсами, такими как видео, симуляторы или интерактивные викторины. Такой подход может учитывать различные стили обучения и предпочтения, одновременно улучшая понимание учащимися концепций квантовых вычислений. |