Difference between revisions of "BSc: AppliedStatisticsInDataAnalysis"
(Created page with "= <span style="color:red;">Название дисциплины</span> = : '''Квалификация выпускника''': <span style="color:red;">бакалавр/ма...") |
V.matiukhin (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | =Прикладная статистика в анализе данных= |
||
− | = <span style="color:red;">Название дисциплины</span> = |
||
− | : '''Квалификация выпускника''': |
+ | : '''Квалификация выпускника''': бакалавр |
− | : '''Направление подготовки''': |
+ | : '''Направление подготовки''': 09.03.01 - “Информатика и вычислительная техника” |
− | : '''Направленность (профиль) образовательной программы''': |
+ | : '''Направленность (профиль) образовательной программы''': Математические основы ИИ |
− | : '''Программу разработал(а)''': |
+ | : '''Программу разработал(а)''': Иванов Владимир Владимирович |
== 1. Краткая характеристика дисциплины == |
== 1. Краткая характеристика дисциплины == |
||
+ | Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области методов математической и прикладной статистики, их применения для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают параметрические и непараметрические методы статистики, методы проверки статистических гипотез, бутстреп, выборочные методы, алгоритмы многоруких бандитов. Отдельно внимание уделяется связям статистических методов и алгоритмов машинного обучения. Курс охватывает методы, применимые в широком спектре контекстов, включая непараметрическую статистику и методы вероятностного моделирования. Этот курс предоставляет слушателям возможность изучить помимо классических тем, включающих случайные величины, вероятность и распределения; соответствующие вероятностные неравенства; случайные векторы, маргинальные и совместные распределения; последовательности случайных величин, также темы, включающие цепи Маркова; методы одномерного и многомерного моделирования; связи статистики с методами анализа данных и машинного обучения. |
||
− | Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области <span style="color:red;">(указывается область изучаемой дисциплины. Например: программного обеспечения и его разработки; робототехники и т.д.)</span>, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают <span style="color:red;">(краткое описание содержания дисциплины)</span>. |
||
+ | |||
+ | |||
== 2. Перечень планируемых результатов обучения == |
== 2. Перечень планируемых результатов обучения == |
||
− | : '''Целью освоения дисциплины''' |
+ | : '''Целью освоения дисциплины''' является выработка у студентов понимания: |
+ | * принципов анализа данных на основе аппарата теории вероятностей и математической статистики, |
||
+ | * теоретических знаний о методах прикладной статистики и области их применимости, |
||
+ | * типичных ошибок применения статистических методов. |
||
+ | |||
+ | |||
+ | : '''Задачами дисциплины''' являются: |
||
+ | * изучение математических основ анализа данных на основе статистики, |
||
+ | * изучение элементов статистического подхода к машинному обучению, |
||
+ | * изучение различий между параметрическими и непараметрическими методами. |
||
− | : '''Задачами дисциплины''' вляются ... <span style="color:red;">(перечислить задачи дисциплины, например: изучение принципов организации подсистем обработки естественного языка для различных прикладных задач и тенденций развития лингвистических ресурсов в сфере интеллектуальных информационных технологий и т.д.).</span> |
||
=== Общая характеристика результата обучения по дисциплине === |
=== Общая характеристика результата обучения по дисциплине === |
||
− | : '''Знания:''' сформированы систематические знания |
+ | : '''Знания:''' сформированы следующие систематические знания |
+ | * Методы оценки: точечные оценки, метод максимального правдоподобия |
||
− | <span style="color:red;">(информация, которой обладает обучающийся в определенных областях, полученная в процессе обучения, то есть это информация для осуществления какой-либо деятельности (действия))</span> |
||
+ | * Доверительный интервал, p-значение, мощность теста |
||
+ | * Непараметрические методы статистики |
||
+ | * Методы сэмплирования (для создания выборки). Выборка по важности, выборка на основе отклонения. Алгоритм Метрополиса-Гастингса. |
||
+ | * Марковские цепи, стационарное распределение. MCMC |
||
− | : '''Умения:''' сформированы умения ... |
||
− | <span style="color:red;">(предполагает целенаправленное выполнение действий, по изученной информации)</span> |
||
+ | : '''Умения:''': сформированы умения в области решения прикладных задач методами статистики: |
||
− | : '''Навыки (владения):''' сформировано владение навыками ... |
||
+ | * корректное применение статистических тестов для анализа данных и получения статистически значимых выводов |
||
− | <span style="color:red;">(автоматизированные устойчивые умения выполнять определенную работу, то есть действие выполняется без контроля сознания, автоматически)</span> |
||
+ | * получение точечных оценок параметров на основе метода максимального правдоподобия |
||
+ | * применение методов байесовской статистики для оценки апостериорного распределения параметров |
||
+ | |||
+ | |||
+ | : '''Навыки (владения):''' |
||
+ | * инструментами статистического моделирования |
||
+ | * распознавание ситуаций, релевантных для применения того или иного теста |
||
== 3. Структура и содержание дисциплины == |
== 3. Структура и содержание дисциплины == |
||
+ | |||
− | <span style="color:red;">(Указываются: 1) порядковый номер раздела (количество разделов зависит от содержания Вашей дисциплины); 2) наименования разделов дисциплины; 3) темы указанных разделов (количество тем в каждом разделе зависит от содержания Вашей дисциплины)</span> |
||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
Line 35: | Line 54: | ||
| style="text-align:center;" | 2. || || -<br> -<br> -<br> -<br> |
| style="text-align:center;" | 2. || || -<br> -<br> -<br> -<br> |
||
|- style="background-color:#F8F9FA; color:#202122;" |
|- style="background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. || || -<br> -<br> -<br> -<br> |
||
− | |- style="background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. || || -<br> -<br> -<br> -<br> |
||
− | |- style="background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. || || -<br> -<br> -<br> -<br> |
||
− | |- style="background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | ... || || -<br> -<br> -<br> -<br> |
||
|} |
|} |
||
Line 50: | Line 62: | ||
| style="width:10%" | №<br>п/п |
| style="width:10%" | №<br>п/п |
||
| style="width:30%" | Наименование раздела<br>дисциплины (модуля) |
| style="width:30%" | Наименование раздела<br>дисциплины (модуля) |
||
− | | style="width:60%" | Перечень рассматриваемых тем (вопросов)<br |
+ | | style="width:60%" | Перечень рассматриваемых тем (вопросов)<br> |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 1. || Введение. Обзор курса и связи с курсом “Теория вероятностей”||Обзор теории вероятностей. Случайные величины. Функция плотности. Матожидание. Условное матожидание. Распределения. Экспоненциальное семейство. |
||
− | | style="text-align:center;" | 1. || || |
||
+ | Распределение данных, генеральная совокупность и выборка. Статистика. Неравенства Маркова, Чебышева. |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 2. ||Статистический вывод ||Точечные и интервальные оценки. Свойства оценок. Метод максимального правдоподобия. |
||
− | | style="text-align:center;" | 2. || || |
||
+ | |||
+ | Тестирование статистических гипотез. Уровень значимости, p-значение. Примеры: t-тест, z-тест. |
||
+ | Проблема множественных сравнений, поправка Бонферрони |
||
+ | Дисперсионный анализ. Критерий Хи-квадрат. Тест на перестановку |
||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 3. ||Непараметрические методы статистики ||Эмпирическая функция распределения. DKW-неравенство. Непараметрические критерии (Уилкоксона, Кускала-Уоллиса, Колмогорова-Смирнова) |
||
− | | style="text-align:center;" | 3. || || |
||
+ | |||
+ | Ресемплинг. Бутстреп (Bootstrap) и беггинг (bagging). |
||
+ | Гистограмма. Ядерная оценка плотности. Сглаживание |
||
+ | |||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 4. ||Приложения: Элементы статистики в машинном обучении ||Минимизация эмпирического риска. Регуляризация. Регрессия. Классификация. Байесовский классификатор. Метод ближайших соседей. Линейный дискриминант Фишера. |
||
− | | style="text-align:center;" | 4. || || |
||
+ | |||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
+ | | style="text-align:center;" | 5. ||Байесовский подход в статистике. Выборочные методы. Методы Монте-Карло по схеме марковской цепи (MCMC). ||Байесовский вывод в статистике. Примеры. Приложения: |
||
− | | style="text-align:center;" | 5. || || |
||
+ | Методы Монте-Карло. Алгоритм Метрополиса-Гастингса. |
||
+ | Алгоритмы многоруких бандитов: эпсилон-жадный, UCB (неравенство Хёффдинга). Сэмплирование по Томпсону. |
||
+ | |||
+ | |||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | ... || || |
||
|} |
|} |
||
+ | |||
'''Текущий контроль успеваемости обучающихся по дисциплине:''' |
'''Текущий контроль успеваемости обучающихся по дисциплине:''' |
||
− | <span style="color:red;">(К формам текущего контроля можно отнести собеседование, коллоквиум, тест, контрольную работу, лабораторную работу, эссе, реферат и иные творческие работы.)</span> |
||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
| style="width:5%" | №<br>п/п |
| style="width:5%" | №<br>п/п |
||
| style="width:20%" | Наименование раздела<br>дисциплины |
| style="width:20%" | Наименование раздела<br>дисциплины |
||
− | | style="width:25%" | Форма текущего контроля<br |
+ | | style="width:25%" | Форма текущего контроля<br> |
− | | style="width:50%" | Материалы текущего контроля<br |
+ | | style="width:50%" | Материалы текущего контроля<br> |
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 1. |
||
− | | |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
− | | Например: |
||
− | Устный / письменный опрос:<br>-<br>-<br>-<br>...<br> |
||
− | Тематика групповых проектов:<br>-<br>-<br>-<br>...<br> |
||
− | Темы докладов:<br>-<br>-<br>-<br>...<br> |
||
− | Тематика эссе:<br>-<br>-<br>-<br>...<br> |
||
− | Задания, в том числе, для групповых проектов:<br>-<br>-<br>-<br>...<br> |
||
− | Тестирование (письменное или компьютерное):<br>-<br>-<br>-<br>...<br><br> |
||
− | Проверка разработки отдельных частей кода программного продукта. |
||
− | Другие формы текущего контроля, используемые Вами на занятиях<br>-<br>-<br>-<br>...<br> |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. |
||
− | | |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
− | | |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. |
||
− | | |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
− | | |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. |
||
− | | |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
− | | |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. |
||
− | | |
||
− | | style="text-align:center;" | <span style="color:red;">Проверка выполнения домашних заданий;<br>Устный / письменный опрос;<br>Тестирование (письменное или компьютерное);<br>Эссе;<br>Доклад;<br>Защита проекта; Коллоквиум;<br>Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях</span> |
||
− | | |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | ... || || || |
||
|} |
|} |
||
+ | |||
'''Контрольные вопросы для подготовки к промежуточной аттестации:''' |
'''Контрольные вопросы для подготовки к промежуточной аттестации:''' |
||
{| class="wikitable" style="width:70%;" |
{| class="wikitable" style="width:70%;" |
||
Line 116: | Line 110: | ||
| style="width:25%" | Наименование <br> раздела дисциплины |
| style="width:25%" | Наименование <br> раздела дисциплины |
||
| style="width:65%" | Вопросы |
| style="width:65%" | Вопросы |
||
+ | |||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 1. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. || || |
||
− | |- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | ... || || |
||
|} |
|} |
||
'''Вопросы/Задания к промежуточной аттестации в устной/письменной форме:''' |
'''Вопросы/Задания к промежуточной аттестации в устной/письменной форме:''' |
||
− | |||
− | <span style="color:red;">(Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ для промежуточной аттестации.)</span> |
||
1.<br>2.<br>3.<br>...<br>48.<br>49.<br>50.<br>... |
1.<br>2.<br>3.<br>...<br>48.<br>49.<br>50.<br>... |
||
+ | |||
=== Перечень учебно-методического обеспечения дисциплины === |
=== Перечень учебно-методического обеспечения дисциплины === |
||
Список основной литературы: |
Список основной литературы: |
||
Список дополнительной литературы: |
Список дополнительной литературы: |
||
+ | |||
=== Методические указания для обучающихся по освоению дисциплины === |
=== Методические указания для обучающихся по освоению дисциплины === |
||
− | <span style="color:red;">(Указываются рекомендации для обучающихся, которые раскрывают суть их работы при различных видах деятельности в рамках освоения дисциплины. Данные рекомендации должны охватывать работу с лекционным материалом, подготовку и работу во время проведения семинарских занятий, самостоятельную работу, подготовку к текущему контролю и промежуточной аттестации)</span> |
||
+ | |||
− | <span style="color:red;">(Выберите соответствующие виды учебных занятий, которые используются при изучении Вашей дисциплины)</span> |
||
{| class="wikitable" style="width:80%;" |
{| class="wikitable" style="width:80%;" |
||
− | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0 |
+ | |- style="vertical-align:middle; text-align:center; background-color:#EAECF0; font-weight:bold;" |
| style="width:20%" | Вид учебных<br>занятий/деятельности |
| style="width:20%" | Вид учебных<br>занятий/деятельности |
||
| style="width:80%" | Деятельность обучающегося |
| style="width:80%" | Деятельность обучающегося |
||
|- |
|- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Лекция |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Практическое (семинарское) занятие |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его.<br>Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Устный/письменный опрос |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Реферат |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Поиск источников и литературы, составление библиографии. При написании реферата рекомендуется использовать разнообразные источники, монографии и статьи из научных журналов, позволяющие глубже разобраться в различных точках зрения на заданную тему. Изучение литературы следует начинать с наиболее общих трудов, затем следует переходить к освоению специализированных исследований по выбранной теме. Могут быть использованы ресурсы сети «Интернет» с соответствующими ссылками на использованные сайты.<br>Если тема содержит проблемный вопрос, следует сформулировать разные точки зрения на него. Рекомендуется в выводах указать свое собственное аргументированное мнение по данной проблеме. Подготовить презентацию для защиты реферата. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Эссе |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Написание прозаического сочинения небольшого объема и свободной композиции, выражающего индивидуальные впечатления и соображения по конкретному поводу или вопросу и заведомо не претендующего на определяющую или исчерпывающую трактовку предмета. При работе над эссе следует четко и грамотно формулировать мысли, структурировать информацию, использовать основные понятия, выделять причинно-следственные связи. Как правило эссе имеет следующую структуру: вступление, тезис и аргументация его, заключение. В качестве аргументов могут выступать исторические факты, явления общественной жизни, события, жизненные ситуации и жизненный опыт, научные доказательства, ссылки на мнение ученых и др. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Подготовка к промежуточной аттестации |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к промежуточной аттестации необходимо проработать вопросы по темам, которые рекомендуются для самостоятельной подготовки. При возникновении затруднений с ответами следует ориентироваться на конспекты лекций, семинаров, рекомендуемую литературу, материалы электронных и информационных справочных ресурсов, статей.<br>Если тема вызывает затруднение, четко сформулировать проблемный вопрос и задать его преподавателю. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Практические (лабораторные) занятия |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Самостоятельная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Видеопрезентация |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Подготовка видеопрезентаций по курсу. Видеопрезентации могут быть сделаны на любую тему, затронутую в ходе курса. Темы должны быть заранее согласованы с преподавателем. Видеопрезентации продолжительностью около 5 минут (300 секунд) должны быть подготовлены в группах, определяемых преподавателем. Несмотря на то, что это групповая работа, должен явно присутствовать вклад каждого члена группы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Доклад |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Дискуссия |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Контрольная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Тестирование (устное/письменное) |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Индивидуальная работа |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Разработка отдельных частей кода |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
||
− | |- |
||
− | | style="vertical-align:middle; text-align:center; color:red;" | Выполнение домашних заданий и групповых проектов |
||
− | | style="vertical-align:middle; text-align:left; color:red;" | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
||
|} |
|} |
||
=== Методы и технологии обучения, способствующие формированию компетенции === |
=== Методы и технологии обучения, способствующие формированию компетенции === |
||
− | <span style="color:red;">(Указываются все используемые преподавателем методы и технологии обучения)</span> |
||
{| class="wikitable" |
{| class="wikitable" |
||
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
|- style="vertical-align:middle; text-align:center; background-color:#EAECF0; color:#202122; font-weight:bold;" |
||
| Методы и технологии обучения, способствующие формированию компетенции |
| Методы и технологии обучения, способствующие формированию компетенции |
||
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
|- style="vertical-align:middle; background-color:#F8F9FA; color:#202122;" |
||
− | | |
||
− | |} |
||
− | <span style="color:red;">Например:</span> |
||
− | {| class="wikitable" style="width:80%;" |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center; width:5%;" | 1. |
||
− | | style="width:20%;" | Информационно – коммуникационная технология |
||
− | | style="width:75%;" | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 2. |
||
− | | Технология развития критического мышления |
||
− | | Основные методические приемы развития критического мышления |
||
− | # Прием «Кластер» |
||
− | # Таблица |
||
− | #Учебно-мозговой штурм |
||
− | #Интеллектуальная разминка |
||
− | #Зигзаг, зигзаг -2 |
||
− | #Прием «Инсерт» |
||
− | #Эссе |
||
− | #Приём «Корзина идей» |
||
− | #Приём «Составление синквейнов» |
||
− | #Метод контрольных вопросов |
||
− | #Приём «Знаю../Хочу узнать…/Узнал…» |
||
− | #Круги по воде |
||
− | #Ролевой проект |
||
− | #Да – нет |
||
− | #Приём «Чтение с остановками» |
||
− | #Приём «Взаимоопрос» |
||
− | #Приём «Перепутанные логические цепочки» |
||
− | #Приём «Перекрёстная дискуссия» |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 3. |
||
− | | Проектная технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 4. |
||
− | | Технология проблемного обучения |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 5. |
||
− | | Кейс – технология |
||
− | | К методам кейс-технологий, активизирующим учебный процесс, относятся: |
||
− | *метод ситуационного анализа (Метод анализа конкретных ситуаций, ситуационные задачи и упражнения; кейс-стадии) |
||
− | *метод инцидента; |
||
− | *метод ситуационно-ролевых игр; |
||
− | *метод разбора деловой корреспонденции; |
||
− | *игровое проектирование; |
||
− | *метод дискуссии. |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 6. |
||
− | | Технология интегрированного обучения |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 7. |
||
− | | Педагогика сотрудничества |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 8. |
||
− | | Технологии уровневой дифференциации |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 9. |
||
− | | Групповая технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 10. |
||
− | | Традиционные технологии (классно-урочная система) |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 11. |
||
− | | Здоровьесберегающие технологии |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 12. |
||
− | | Игровая технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 13. |
||
− | | Модульная технология |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | style="text-align:center;" | 14. |
||
− | | Технология мастерских |
||
− | | |
||
− | |- style="vertical-align:top; text-align:left; background-color:#F8F9FA; color:#202122;" |
||
− | | |
||
− | | и др. |
||
| |
| |
||
|} |
|} |
Revision as of 08:51, 15 April 2024
Прикладная статистика в анализе данных
- Квалификация выпускника: бакалавр
- Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
- Направленность (профиль) образовательной программы: Математические основы ИИ
- Программу разработал(а): Иванов Владимир Владимирович
1. Краткая характеристика дисциплины
Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области методов математической и прикладной статистики, их применения для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают параметрические и непараметрические методы статистики, методы проверки статистических гипотез, бутстреп, выборочные методы, алгоритмы многоруких бандитов. Отдельно внимание уделяется связям статистических методов и алгоритмов машинного обучения. Курс охватывает методы, применимые в широком спектре контекстов, включая непараметрическую статистику и методы вероятностного моделирования. Этот курс предоставляет слушателям возможность изучить помимо классических тем, включающих случайные величины, вероятность и распределения; соответствующие вероятностные неравенства; случайные векторы, маргинальные и совместные распределения; последовательности случайных величин, также темы, включающие цепи Маркова; методы одномерного и многомерного моделирования; связи статистики с методами анализа данных и машинного обучения.
2. Перечень планируемых результатов обучения
- Целью освоения дисциплины является выработка у студентов понимания:
- принципов анализа данных на основе аппарата теории вероятностей и математической статистики,
- теоретических знаний о методах прикладной статистики и области их применимости,
- типичных ошибок применения статистических методов.
- Задачами дисциплины являются:
- изучение математических основ анализа данных на основе статистики,
- изучение элементов статистического подхода к машинному обучению,
- изучение различий между параметрическими и непараметрическими методами.
Общая характеристика результата обучения по дисциплине
- Знания: сформированы следующие систематические знания
- Методы оценки: точечные оценки, метод максимального правдоподобия
- Доверительный интервал, p-значение, мощность теста
- Непараметрические методы статистики
- Методы сэмплирования (для создания выборки). Выборка по важности, выборка на основе отклонения. Алгоритм Метрополиса-Гастингса.
- Марковские цепи, стационарное распределение. MCMC
- Умения:: сформированы умения в области решения прикладных задач методами статистики:
- корректное применение статистических тестов для анализа данных и получения статистически значимых выводов
- получение точечных оценок параметров на основе метода максимального правдоподобия
- применение методов байесовской статистики для оценки апостериорного распределения параметров
- Навыки (владения):
- инструментами статистического моделирования
- распознавание ситуаций, релевантных для применения того или иного теста
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | - - - - | |
2. | - - - - |
4. Методические и оценочные материалы
Задания для практических занятий:
№ п/п |
Наименование раздела дисциплины (модуля) |
Перечень рассматриваемых тем (вопросов) |
1. | Введение. Обзор курса и связи с курсом “Теория вероятностей” | Обзор теории вероятностей. Случайные величины. Функция плотности. Матожидание. Условное матожидание. Распределения. Экспоненциальное семейство.
Распределение данных, генеральная совокупность и выборка. Статистика. Неравенства Маркова, Чебышева. |
2. | Статистический вывод | Точечные и интервальные оценки. Свойства оценок. Метод максимального правдоподобия.
Тестирование статистических гипотез. Уровень значимости, p-значение. Примеры: t-тест, z-тест. Проблема множественных сравнений, поправка Бонферрони Дисперсионный анализ. Критерий Хи-квадрат. Тест на перестановку |
3. | Непараметрические методы статистики | Эмпирическая функция распределения. DKW-неравенство. Непараметрические критерии (Уилкоксона, Кускала-Уоллиса, Колмогорова-Смирнова)
Ресемплинг. Бутстреп (Bootstrap) и беггинг (bagging). Гистограмма. Ядерная оценка плотности. Сглаживание
|
4. | Приложения: Элементы статистики в машинном обучении | Минимизация эмпирического риска. Регуляризация. Регрессия. Классификация. Байесовский классификатор. Метод ближайших соседей. Линейный дискриминант Фишера.
|
5. | Байесовский подход в статистике. Выборочные методы. Методы Монте-Карло по схеме марковской цепи (MCMC). | Байесовский вывод в статистике. Примеры. Приложения:
Методы Монте-Карло. Алгоритм Метрополиса-Гастингса. Алгоритмы многоруких бандитов: эпсилон-жадный, UCB (неравенство Хёффдинга). Сэмплирование по Томпсону.
|
Текущий контроль успеваемости обучающихся по дисциплине:
№ п/п |
Наименование раздела дисциплины |
Форма текущего контроля |
Материалы текущего контроля |
Контрольные вопросы для подготовки к промежуточной аттестации:
№ п/п |
Наименование раздела дисциплины |
Вопросы |
Вопросы/Задания к промежуточной аттестации в устной/письменной форме:
1.
2.
3.
...
48.
49.
50.
...
Перечень учебно-методического обеспечения дисциплины
Список основной литературы:
Список дополнительной литературы:
Методические указания для обучающихся по освоению дисциплины
Вид учебных занятий/деятельности |
Деятельность обучающегося |
Методы и технологии обучения, способствующие формированию компетенции
Методы и технологии обучения, способствующие формированию компетенции |