BSc: Advanced Compilers Construction and Program Analysis
Revision as of 12:55, 12 July 2022 by R.sirgalina (talk | contribs)
Advanced Compilers Construction and Program Analysis
- Course name: Advanced Compilers Construction and Program Analysis
- Code discipline: XYZ
- Subject area: xxx
Short Description
This course covers the following concepts: Advanced Compilers Construction and Program Analysis concepts:.
Prerequisites
Prerequisite subjects
Prerequisite topics
Course Topics
Section | Topics within the section |
---|---|
Introduction to subject, computer networks basics, transport layer protocols, and socket programming |
|
Coordination, consistency, and replication in distributed systems | |
Fault tolerance and security in distributed systems |
Intended Learning Outcomes (ILOs)
What is the main purpose of this course?
Advanced Compilers Construction and Program Analysis have become
ILOs defined at three levels
Level 1: What concepts should a student know/remember/explain?
By the end of the course, the students should be able to ...
Level 2: What basic practical skills should a student be able to perform?
By the end of the course, the students should be able to ...
Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?
By the end of the course, the students should be able to ...
Grading
Course grading range
Grade | Range | Description of performance |
---|---|---|
A. Excellent | 90-100 | - |
B. Good | 75-89 | - |
C. Satisfactory | 60-74 | - |
D. Poor | 0-59 | - |
Course activities and grading breakdown
Activity Type | Percentage of the overall course grade |
---|---|
Laboratory assignments | 55% |
Final exam | 35% |
Attendance | 10% |
Recommendations for students on how to succeed in the course
Resources, literature and reference materials
Open access resources
- Textbook:. Available online:
- Reference:. Available online:
- Reference:. Available online: h
Closed access resources
Software and tools used within the course
Teaching Methodology: Methods, techniques, & activities
Activities and Teaching Methods
Learning Activities | Section 1 | Section 2 | Section 3 | Section 4 |
---|---|---|---|---|
Development of individual parts of software product code | 1 | 1 | 1 | 1 |
Homework and group projects | 1 | 1 | 1 | 1 |
Testing (written or computer based) | 1 | 1 | 1 | 1 |
Oral polls | 1 | 1 | 1 | 1 |
Discussions | 1 | 1 | 1 | 1 |
Formative Assessment and Course Activities
Ongoing performance assessment
Section 1
Activity Type | Content | Is Graded? |
---|---|---|
Question | ? | 1 |
Question | . | 1 |
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Section 2
Activity Type | Content | Is Graded? |
---|---|---|
Question | You have a list of large numbers, and you need to find if they are prime or not. Would you use multithreading, multiprocessing, or sequential programming in order to complete the task asap? Prove it in practice. | 0 |
Question | You need to send multiple requests to a server and receive responses. Assume there is a few msecs of delay before you receive the response from the server. Would you use multithreading, multiprocessing, or sequential programming in order to complete the task asap? Prove it in practice. (Order of the requests/responses doesn't matter) | 0 |
Question | Discuss two ways of creating the threads using threading module in Python: 1) passing the worker function as a target, 2) subclassing the Thread class | 0 |
Question | Given the function implemented locally, make it available to be called through RPC from remote process? Use xmlRPC. | 0 |
Section 3
Activity Type | Content | Is Graded? |
---|---|---|
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Question | ? | 1 |
Section 4
Activity Type | Content | Is Graded? |
---|---|---|
Question | Same as above | 0 |
Final assessment
Section 1
- ?
- ?
- ?
- ?
Section 2
Section 3
Section 4
- Same as above
The retake exam
Section 1
Section 2
Section 3
Section 4