BSc: IntroductionToCombinatoricsAndDiscreteMathematics

From IU
Jump to navigation Jump to search

Введение в комбинаторику и дискретную математику

Квалификация выпускника: бакалавр
Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
Направленность (профиль) образовательной программы: Математические основы ИИ
Программу разработал(а):

1. Краткая характеристика дисциплины

Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области комбинаторики и дискретной математики, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают основные правила комбинаторики (сложение, умножение, принцип Дирихле, формула включений и исключений), концепции (числа сочетаний и размещений, рекуррентные соотношения, разбиения, формальные степенные ряды и производящие функции).

2. Перечень планируемых результатов обучения

Целью освоения дисциплины
Задачами дисциплины являются изучение основных правил и концепций комбинаторики для различных прикладных задач.


Общая характеристика результата обучения по дисциплине

Знания: сформированы систематические знания по комбинаторике и дискретной математики.
Умения:
Навыки (владения):

3. Структура и содержание дисциплины


п/п
Наименование раздела
дисциплины
Содержание дисциплины по темам
1. Основные правила комбинаторики - правило сложения

- правило умножения

- правило дополнения

- принцип Дирихле

2. Основные комбинаторные величины - размещения с повторениями / без повторений

- сочетания с повторениями/ без повторений

- перестановки

- треугольник Паскаля

- линейный город

- биномиальный и полиномиальный коэффициент

3. Тождества с биномиальными коэффициентами - симметричность

- унимодальность

- рекуррентное соотношение

- Бином Ньютона

- сумма биномиальных коэффициентов (в том числе альтернированная)

- сумма квадратов биномиальных коэффициентов

- сумма степеней натуральных чисел

- формула включений и исключений

- число беспорядков

4. Рекуррентные соотношения - линейные однородные рекуррентные соотношения

- л.о.р.с. для степени 2 с разными корнями

- л.о.р.с. для степени 2 с кратным корнем

- формулировка теоремы в общем случае

- числа Фибоначчи

- формулировка теоремы для неоднородного случая

5. Разбиения - упорядоченные и неупорядоченные разбиения

- диаграммы Юнга

- теоремы Эйлера о равенстве неупорядоченных разбиений

- асимптотика неупорядоченных разбиений

6 Формальные степенные ряды и производящие функции - формальные степенные ряды

- обратимость ряда, пример деления в столбик

- доказательство комб. тождеств при помощи формального степенного ряда

- производящие функции для рекуррентных соотношений

- возведение ряда в степень

- числа Каталана

4. Методические и оценочные материалы

Задания для практических занятий:


п/п
Наименование раздела
дисциплины (модуля)
Перечень рассматриваемых тем (вопросов)
1.
2.

Текущий контроль успеваемости обучающихся по дисциплине:


п/п
Наименование раздела
дисциплины
Форма текущего контроля
Материалы текущего контроля

Контрольные вопросы для подготовки к промежуточной аттестации:


п/п
Наименование
раздела дисциплины
Вопросы

Вопросы/Задания к промежуточной аттестации в устной/письменной форме:

1.
2.
3.
...
48.
49.
50.
...

Перечень учебно-методического обеспечения дисциплины

Список основной литературы:

Список дополнительной литературы:

Методические указания для обучающихся по освоению дисциплины

Вид учебных
занятий/деятельности
Деятельность обучающегося

Методы и технологии обучения, способствующие формированию компетенции

Методы и технологии обучения, способствующие формированию компетенции