BSc: MathematicalAnalysis II

From IU
Revision as of 15:28, 1 April 2024 by V.matiukhin (talk | contribs)
Jump to navigation Jump to search

Название дисциплины

Квалификация выпускника: бакалавр
Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
Направленность (профиль) образовательной программы: Математические основы ИИ
Программу разработал(а): О.М.Киселев

1. Краткая характеристика дисциплины

Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области математического анализа, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины рассматриваются пределы функций нескольких переменных, частные производные и многомерные интегралы, а также элементы теории векторных полей.

Здесь наряду со стандартными разделами, необходимыми для курса математического анализа, важное внимание уделяется методам оптимизации, от задач оптимизации с ограничениями, приводящих к функции Лагранжа, до построения регрессий методом наименьших квадратов и различных вариантов методов спуска.

Важную роль в предлагаемом курсе занимает исследование дифференцируемых многообразий, геометрии касательных подпространств. Кроме того в курсе уделяется существенное внимание приложениям анализа – преобразованию Фурье и преобразованию Радона. Рассматривается дискретное преобразование Фурье, которое является важным для дисциплин, изучаемых на старших курсах. .

2. Перечень планируемых результатов обучения

Целью освоения дисциплины является обучение студентов методам исследования свойств функций многих переменных. В частности, пределов и частных производных, дифференцируемых многообразий, многомерных интегралов и теории векторных полей.
Задачами дисциплины являются приобретение студентами навыков исследования естественнонаучных задач методами математического анализа. А именно, применение теоретических знаний в приложениях математического анализа в частности, для анализа кривых, (траекторий) в пространстве, приемов интегрирования для исследования геометрических свойств физических тел, понятия градиента для методов оптимизации, теории аппроксимации степенными рядами и рядами Фурье.

Общая характеристика результата обучения по дисциплине

Знания: после прохождения курса у студентов должны бытьсформированы систематические знания теории пределов функций нескольких переменных, свойств частных производных, свойств дифференцируемых многообразий, методов оптимизации, многомерных интегралов и теории векторных полей.
Умения: сформированы умения сформированы умения вычисления пределов и частных производных функций нескольких переменных, применения частных производных для построения крат дифференцируемых многообразий, поиска минимумов функций с заданными ограничениями, вычисления многомерных интегралов с помощью формул Грина и Остроградского -Гаусса.
Навыки (владения): в результате прохождения курса формируются навыки формализации задач естественных наук в задачи, исследуемых с помощью методов математического анализа нескольких вещественных вещественной переменных. Студенты должны научиться использовать градиенты функций в алгоритмах минимизации, использовать степенные и тригонометрические ряды и оценивать остатки при использовании частичных сумм таких рядов. После окончания курса у студентов должны быть получены навыки использования систем (библиотек) компьютерной алгебры, применяемых для исследования задач математического анализа.

3. Структура и содержание дисциплины


п/п
Наименование раздела
дисциплины
Содержание дисциплины по темам
1. Ряды. Сумма бесконечного ряда. Признаки сходимости Даламбера, Коши. Интегральный признак сходимости. Знакопеременные ряды. Признаки сходимости Абеля и Дирихле. Теорема Римана о сумме условно сходящегося ряда. Степенные ряды и ряды Фурье.
2. Многомерный анализ. Предел функций нескольких переменных. Частные производные. Производная сложной функции. Градиент. Дифференцируемые многообразия. Экстремумы функций многих переменных. Экстремальные задачи на многообразиях и функция Лагранжа.
3. Кратные интегралы. Двойной интеграл и повторный интеграл. Двойной интеграл по криволинейной поверхности. Интегралы в полярных координатах, подстановки в двойных интегралах. Интегралы в цилиндрических и сферических координатах Применение двойных и тройных интегралов.
4. Векторный анализ. Криволинейные интегралы. Полные дифференциалы. Теорема Грина. Теорема о циркуляции и теорема Стокса. Теорема о потоке и дивергенции.

4. Методические и оценочные материалы

Задания для практических занятий:


п/п
Наименование раздела
дисциплины (модуля)
Перечень рассматриваемых тем (вопросов)
(Указываются ВСЕ задания для практических занятий по разделам дисциплины подробно в соответствии с темами)
1.
2.
3.
4.
5.
...

Текущий контроль успеваемости обучающихся по дисциплине:

(К формам текущего контроля можно отнести собеседование, коллоквиум, тест, контрольную работу, лабораторную работу, эссе, реферат и иные творческие работы.)


п/п
Наименование раздела
дисциплины
Форма текущего контроля

(выберите соответствующие формы контроля)
Материалы текущего контроля

(Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ текущего контроля успеваемости обучающихся по разделам дисциплины подробно в соответствии с требованиями)
1. Проверка выполнения домашних заданий;
Устный / письменный опрос;
Тестирование (письменное или компьютерное);
Эссе;
Доклад;
Защита проекта; Коллоквиум;
Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях
Например:

Устный / письменный опрос:
-
-
-
...
Тематика групповых проектов:
-
-
-
...
Темы докладов:
-
-
-
...
Тематика эссе:
-
-
-
...
Задания, в том числе, для групповых проектов:
-
-
-
...
Тестирование (письменное или компьютерное):
-
-
-
...

Проверка разработки отдельных частей кода программного продукта.

Другие формы текущего контроля, используемые Вами на занятиях
-
-
-
...

2. Проверка выполнения домашних заданий;
Устный / письменный опрос;
Тестирование (письменное или компьютерное);
Эссе;
Доклад;
Защита проекта; Коллоквиум;
Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях
3. Проверка выполнения домашних заданий;
Устный / письменный опрос;
Тестирование (письменное или компьютерное);
Эссе;
Доклад;
Защита проекта; Коллоквиум;
Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях
4. Проверка выполнения домашних заданий;
Устный / письменный опрос;
Тестирование (письменное или компьютерное);
Эссе;
Доклад;
Защита проекта; Коллоквиум;
Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях
5. Проверка выполнения домашних заданий;
Устный / письменный опрос;
Тестирование (письменное или компьютерное);
Эссе;
Доклад;
Защита проекта; Коллоквиум;
Проверка разработки отдельных частей кода программного продукта и другие формы текущего контроля, используемые Вами на занятиях
...

Контрольные вопросы для подготовки к промежуточной аттестации:


п/п
Наименование
раздела дисциплины
Вопросы
1.
2.
3.
4.
5.
...

Вопросы/Задания к промежуточной аттестации в устной/письменной форме:

(Указываются ВСЕ ЗАДАНИЯ/ВОПРОСЫ для промежуточной аттестации.)

1.
2.
3.
...
48.
49.
50.
...

Перечень учебно-методического обеспечения дисциплины

Список основной литературы:

Список дополнительной литературы:

Методические указания для обучающихся по освоению дисциплины

(Указываются рекомендации для обучающихся, которые раскрывают суть их работы при различных видах деятельности в рамках освоения дисциплины. Данные рекомендации должны охватывать работу с лекционным материалом, подготовку и работу во время проведения семинарских занятий, самостоятельную работу, подготовку к текущему контролю и промежуточной аттестации)

(Выберите соответствующие виды учебных занятий, которые используются при изучении Вашей дисциплины)

Вид учебных
занятий/деятельности
Деятельность обучающегося
Лекция Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия.
Практическое (семинарское) занятие При подготовке к семинарскому (практическому) занятию необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. На основании обработанной информации постараться сформировать собственное мнение по выносимой на обсуждение тематике. Обосновать его аргументами, сформировать список источников, подкрепляющих его.
Во время семинарского (практического) занятия активно участвовать в обсуждении вопросов, высказывать аргументированную точку зрения на проблемные вопросы. Приводить примеры из источниковой базы и научной и/или исследовательской литературы.
Устный/письменный опрос Отвечать, максимально полно, логично и структурировано, на поставленный вопрос. Основная цель – показать всю глубину знаний по конкретной теме или ее части.
Реферат Поиск источников и литературы, составление библиографии. При написании реферата рекомендуется использовать разнообразные источники, монографии и статьи из научных журналов, позволяющие глубже разобраться в различных точках зрения на заданную тему. Изучение литературы следует начинать с наиболее общих трудов, затем следует переходить к освоению специализированных исследований по выбранной теме. Могут быть использованы ресурсы сети «Интернет» с соответствующими ссылками на использованные сайты.
Если тема содержит проблемный вопрос, следует сформулировать разные точки зрения на него. Рекомендуется в выводах указать свое собственное аргументированное мнение по данной проблеме. Подготовить презентацию для защиты реферата.
Эссе Написание прозаического сочинения небольшого объема и свободной композиции, выражающего индивидуальные впечатления и соображения по конкретному поводу или вопросу и заведомо не претендующего на определяющую или исчерпывающую трактовку предмета. При работе над эссе следует четко и грамотно формулировать мысли, структурировать информацию, использовать основные понятия, выделять причинно-следственные связи. Как правило эссе имеет следующую структуру: вступление, тезис и аргументация его, заключение. В качестве аргументов могут выступать исторические факты, явления общественной жизни, события, жизненные ситуации и жизненный опыт, научные доказательства, ссылки на мнение ученых и др.
Подготовка к промежуточной аттестации При подготовке к промежуточной аттестации необходимо проработать вопросы по темам, которые рекомендуются для самостоятельной подготовки. При возникновении затруднений с ответами следует ориентироваться на конспекты лекций, семинаров, рекомендуемую литературу, материалы электронных и информационных справочных ресурсов, статей.
Если тема вызывает затруднение, четко сформулировать проблемный вопрос и задать его преподавателю.
Практические (лабораторные) занятия Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов.
Самостоятельная работа Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка видеопрезентации. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис.
Видеопрезентация Подготовка видеопрезентаций по курсу. Видеопрезентации могут быть сделаны на любую тему, затронутую в ходе курса. Темы должны быть заранее согласованы с преподавателем. Видеопрезентации продолжительностью около 5 минут (300 секунд) должны быть подготовлены в группах, определяемых преподавателем. Несмотря на то, что это групповая работа, должен явно присутствовать вклад каждого члена группы.
Доклад Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис.
Дискуссия Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию.
Контрольная работа При подготовке к контрольной работе необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме.
Тестирование (устное/письменное) При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части.
Индивидуальная работа При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы.
Разработка отдельных частей кода Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем.
Выполнение домашних заданий и групповых проектов Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме.

Методы и технологии обучения, способствующие формированию компетенции

Методы и технологии обучения, способствующие формированию компетенции
В курсе планируется использовать несколько технологий обучения. Таких как: интерактивные лекции , поощряющие участие студентов посредством сессий вопросов и ответов, живые демонстрации концепций квантовых вычислений или групповые дискуссии .

Проблемно-ориентированное обучение – мероприятия по решению проблем, которые побуждают студентов применять концепции квантовых вычислений в практических ситуациях. Этот метод может улучшить навыки критического мышления и закрепления знаний.

Будут применяться программные библиотеки для аналитических и численных методов: SymPy, NumPy, и SciPy , что позволит использовать компьютер как инструмент для изучения свойств аналитических функции, изучать теорию аппроксимаций и получить опыт использования компьютерных вычислений в задачах математического анализа.

Планируется предложить совместные проекты , которые требуют применения концепций квантовых вычислений в реальных сценариях или создания новых квантовых алгоритмов. Такой подход может способствовать командной работе, навыкам общения и креативности, одновременно углубляя понимание студентами концепций квантовых вычислений.

Важный элемент курса – смешанное обучение : сочетание традиционного очного обучения с онлайн-учебными ресурсами, такими как видео, симуляторы или интерактивные викторины. Такой подход может учитывать различные стили обучения и предпочтения, одновременно улучшая понимание учащимися концепций квантовых вычислений.