IU:TestPage
Revision as of 16:03, 6 December 2021 by R.sirgalina (talk | contribs)
Analytical Geometry \& Linear Algebra -- II
- Course name: Analytical Geometry \& Linear Algebra -- II
- Course number: XYZ
Course Characteristics
Key concepts of the class
- fundamental principles of linear algebra,
- concepts of linear algebra objects and their representation in vector-matrix form
What is the purpose of this course?
Course objectives based on Bloom’s taxonomy
- What should a student remember at the end of the course?
By the end of the course, the students should be able to
- List basic notions of linear algebra
- Understand key principles involved in solution of linear equation systems and the properties of matrices
- Linear regression analysis
- Fast Fourier Transform
- How to find eigenvalues and eigenvectors for matrix diagonalization and single value decomposition
- What should a student be able to understand at the end of the course?
By the end of the course, the students should be able to
- Key principles involved in solution of linear equation systems and the properties of matrices
- Become familiar with the four fundamental subspaces
- Linear regression analysis
- Fast Fourier Transform
- How to find eigenvalues and eigenvectors for matrix diagonalization and single value decomposition
- What should a student be able to apply at the end of the course?
By the end of the course, the students should be able to
- Linear equation system solving by using the vector-matrix approach
- Make linear regression analysis
- Fast Fourier Transform
- To find eigenvalues and eigenvectors for matrix diagonalization and single value decomposition
Course evaluation
Type | Points |
---|---|
Labs/seminar classes | 20 |
Interim performance assessment | 30 |
Exams | 50 |
Grades range
Grade | Points |
---|---|
A | [85, 100] |
B | [65, 84] |
C | [50, 64] |
D | [0, 49] |
Resources and reference material
- Gilbert Strang. Linear Algebra and Its
Applications, 4th Edition, Brooks Cole, 2006. ISBN: 9780030105678
- Gilbert Strang. Introduction to Linear Algebra, 4th Edition, Wellesley, MA: Wellesley-Cambridge Press, 2009. ISBN: 9780980232714