BSc: MathematicalAnalysis II
Название дисциплины
- Квалификация выпускника: бакалавр
- Направление подготовки: 09.03.01 - “Информатика и вычислительная техника”
- Направленность (профиль) образовательной программы: Математические основы ИИ
- Программу разработал(а): О.М.Киселев
1. Краткая характеристика дисциплины
Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области математического анализа, их применение для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины рассматриваются пределы функций нескольких переменных, частные производные и многомерные интегралы, а также элементы теории векторных полей.
Здесь наряду со стандартными разделами, необходимыми для курса математического анализа, важное внимание уделяется методам оптимизации, от задач оптимизации с ограничениями, приводящих к функции Лагранжа, до построения регрессий методом наименьших квадратов и различных вариантов методов спуска.
Важную роль в предлагаемом курсе занимает исследование дифференцируемых многообразий, геометрии касательных подпространств. Кроме того в курсе уделяется существенное внимание приложениям анализа – преобразованию Фурье и преобразованию Радона. Рассматривается дискретное преобразование Фурье, которое является важным для дисциплин, изучаемых на старших курсах. .
2. Перечень планируемых результатов обучения
- Целью освоения дисциплины является обучение студентов методам исследования свойств функций многих переменных. В частности, пределов и частных производных, дифференцируемых многообразий, многомерных интегралов и теории векторных полей.
- Задачами дисциплины являются приобретение студентами навыков исследования естественнонаучных задач методами математического анализа. А именно, применение теоретических знаний в приложениях математического анализа в частности, для анализа кривых, (траекторий) в пространстве, приемов интегрирования для исследования геометрических свойств физических тел, понятия градиента для методов оптимизации, теории аппроксимации степенными рядами и рядами Фурье.
Общая характеристика результата обучения по дисциплине
- Знания: после прохождения курса у студентов должны бытьсформированы систематические знания теории пределов функций нескольких переменных, свойств частных производных, свойств дифференцируемых многообразий, методов оптимизации, многомерных интегралов и теории векторных полей.
- Умения: сформированы умения сформированы умения вычисления пределов и частных производных функций нескольких переменных, применения частных производных для построения крат дифференцируемых многообразий, поиска минимумов функций с заданными ограничениями, вычисления многомерных интегралов с помощью формул Грина и Остроградского -Гаусса.
- Навыки (владения): в результате прохождения курса формируются навыки формализации задач естественных наук в задачи, исследуемых с помощью методов математического анализа нескольких вещественных вещественной переменных. Студенты должны научиться использовать градиенты функций в алгоритмах минимизации, использовать степенные и тригонометрические ряды и оценивать остатки при использовании частичных сумм таких рядов. После окончания курса у студентов должны быть получены навыки использования систем (библиотек) компьютерной алгебры, применяемых для исследования задач математического анализа.
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | Ряды. | Сумма бесконечного ряда. Признаки сходимости Даламбера, Коши. Интегральный признак сходимости. Знакопеременные ряды. Признаки сходимости Абеля и Дирихле. Теорема Римана о сумме условно сходящегося ряда. Степенные ряды и ряды Фурье. |
2. | Многомерный анализ. | Предел функций нескольких переменных. Частные производные. Производная сложной функции. Градиент. Дифференцируемые многообразия. Экстремумы функций многих переменных. Экстремальные задачи на многообразиях и функция Лагранжа. |
3. | Кратные интегралы. | Двойной интеграл и повторный интеграл. Двойной интеграл по криволинейной поверхности. Интегралы в полярных координатах, подстановки в двойных интегралах. Интегралы в цилиндрических и сферических координатах Применение двойных и тройных интегралов. |
4. | Векторный анализ. | Криволинейные интегралы. Полные дифференциалы. Теорема Грина. Теорема о циркуляции и теорема Стокса. Теорема о потоке и дивергенции. |
4. Методические и оценочные материалы
Задания для практических занятий:
№ п/п |
Наименование раздела дисциплины (модуля) |
Перечень рассматриваемых тем (вопросов) |
1. | Пределы последовательностей и функций. |
1. Найти предел последовательности
\\[S=\\sum_{n=1}^\\infty \\left(f_n-f_{n+1}\\right)\\]
|
2. | ||
3. | ||
4. | ||
5. | ||
... |
Текущий контроль успеваемости обучающихся по дисциплине:
№ п/п |
Наименование раздела дисциплины |
Форма текущего контроля |
Материалы текущего контроля |
1. | Пределы последовательностей и функций.
Отношения порядка и непрерывные функции. |
Устный опрос, Домашние работы, Письменный тест | В домашние работы включаются задачи, нерешенные во время семинарских занятий.
Тестирование (письменное или компьютерное): |
2. | Функциональные ряды: степенные ряды и ряды Фурье. | Домашние работы. Письменный тест.
Устный опрос по темам разделов Коллоквиум |
В домашние работы включаются задачи, нерешенные во время семинарских занятий.
Письменный тест содержит пять задач из соответствующих разделов: |
3. | Пределы функций многих переменных, частные производные, градиент. Дифференцируемые многообразия. Экстремумы функций нескольких переменных. | Домашние работы. Письменный тест.
Устный опрос по темам разделов |
В домашние работы включаются задачи, нерешенные во время семинарских занятий. Письменный тест содержит пять задач из соответствующих разделов: предел функции двух переменных; частные производные и производные по направлению; Геометрический смысл частных производных и дифференцируемые многообразия; экстремальные точки и условия максима или минимума; Задачи минимизации на многообразиях — функция Ланранжа. |
4. | Кратные интегралы и Векторный анализ | Домашние работы. Письменный тест.
Устный опрос по темам разделов |
В домашние работы включаются задачи, нерешенные во время семинарских занятий. Письменный тест содержит четыре задачи из раздела: Криволинейные интегралы и двумерные интегралы и формула Грина; двумерные и трехмерные интегралы и формула Остроградского-Гаусса; вычисление дивергенции и вычисление ротора для заданных векторных полей. |
Контрольные вопросы для подготовки к промежуточной аттестации:
№ п/п |
Наименование раздела дисциплины |
Вопросы | ||||||||||||||||||||||||||||||||||||
1. | Числовые ряды, абсолютно сходящиеся ряды, условно сходящиеся ряды. | 1. Определение сходящегося ряда. Определение ряда, сходящегося абсолютно. Определение ряда, сходящегося условно. 2. Признаки сходимости Даламбера, Коши, интегральный признак сходимости. Геометрический ряд и его использование как мажорирующего ряда.
| ||||||||||||||||||||||||||||||||||||
2. | Функциональные ряды: степенные ряды и ряды Фурье. | 1. Определение интервала сходимости степенного ряда. 2. Почленное интегрирование и дифференцирование степенных рядов.
| ||||||||||||||||||||||||||||||||||||
3. | Пределы функций многих переменных, частные производные, градиент. Дифференцируемые многообразия. Экстремумы функций нескольких переменных | 1. Условие существования предела функции нескольких переменных. 2. Условие перестановки пределов функции нескольких переменных. | ||||||||||||||||||||||||||||||||||||
4. | Кратные интегралы и Векторный анализ. | 1. Определение и примеры вычисления криволинейных интегралов первого и второго рода. 2. Вывод и примеры использования формулы Грина.
1. Определения абсолютной и условной сходимости ряда и чем они отличаются? Можете ли вы привести пример ряда, который является условно сходящимся, но не абсолютно сходящимся? Перечень учебно-методического обеспечения дисциплиныСписок основной литературы: Список дополнительной литературы: Методические указания для обучающихся по освоению дисциплины
Методы и технологии обучения, способствующие формированию компетенции
|