BSc: Introduction To Computer Vision

From IU
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduction to Computer Vision

  • Course name: Introduction to Computer Vision
  • Code discipline: XXX
  • Subject area:

Short Description

This course covers the following concepts: Computer vision using machine learning models.

Prerequisites

Prerequisite subjects

Prerequisite topics

Course Topics

Course Sections and Topics
Section Topics within the section
Representation of images and videos
  1. Computer representation
  2. Rescaling/manipulating images
Image Classification
  1. Loss Functions
  2. Backpropagation
  3. Neural Networks
  4. Training
Convolutional Neural Networks
  1. Training
  2. Architectures
Recurrent Neural Networks
  1. Training
  2. Architectures
Image Segmentation and object detection
  1. Techniques

Intended Learning Outcomes (ILOs)

What is the main purpose of this course?

This course provides an introductory but detailed treatment of computer vision techniques using machine learning, with an emphasis on implementing the computer vision algorithms from the scratch and using them to solve real-world problems. The course will begin with the image representation, but will quickly transition to computer vision techniques using machine learning, finishing with image segmentation and object detection and recognition. A key focus of the course is on providing students with not only theory but also hands-on practice of building their computer vision applications.

ILOs defined at three levels

Level 1: What concepts should a student know/remember/explain?

By the end of the course, the students should be able to ...

  • Significant exposure to real-world implementations
  • To develop research interest in the theory and application of computer vision

Level 2: What basic practical skills should a student be able to perform?

By the end of the course, the students should be able to ...

  • Suitability of different computer vision models in different scenarios
  • Ability to choose the right model for the given task

Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?

By the end of the course, the students should be able to ...

  • Hands on experience to implement different models to know inside behavior
  • Sufficient exposure to train and deploy model for the given task
  • Fine tune the deployed model in the real-world settings

Grading

Course grading range

Grade Range Description of performance
A. Excellent 91-100 -
B. Good 78-90 -
C. Satisfactory 60-77 -
D. Poor 0-59 -

Course activities and grading breakdown

Activity Type Percentage of the overall course grade
Weekly Labs 50
Weekly Quizzes 10
Midterm Exam 15
Final Exam 25

Recommendations for students on how to succeed in the course

Resources, literature and reference materials

Open access resources

  • Handouts supplied by the instructor
  • Materials from the internet and research papers shared by instructor

Closed access resources

Software and tools used within the course

Teaching Methodology: Methods, techniques, & activities