BSc: Physics II.previous version
Jump to navigation
Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Physics II
- Course name: Physics II
- Course number: XYZ
- Knowledge area: Mathematical Physics
Administrative details
- Faculty: Computer Science and Engineering
- Year of instruction: 2nd year of BS
- Semester of instruction: 1st semester
- No. of Credits: 4 ECTS
- Total workload on average: 144 hours overall
- Frontal lecture hours: 2 per week
- Frontal tutorial hours: 2 per week
- Lab hours: 2 per week
- Individual lab hours: 0
- Frequency: weekly throughout the semester
- Grading mode: letters: A, B, C, D
Prerequisites
- CSE201 — Mathematical Analysis I: functions, limits, derivatives, definite and indefinite integrals, exponentials
- CSE202 — Analytical Geometry and Linear Algebra I: vector and matrix operations, spatial analysis (unit vectors, rotations)
- CSE205 — Differential Equations: first- and second-order ODEs
Course outline
This course provides the fundamentals of electric circuits.
Expected learning outcomes
- Become familiar with the scope and general nature of the fields of electric circuits
- Become aware of the relevance of the study of electric circuits to engineering
- Understand the fundamental laws of electrical circuit theory such as Ohm’s law, Kirchhoff’s laws, mesh analysis, and nodal analysis to solve simple circuit problems
- Understand the concepts of maximum power transfer and of source transformation
- Are able to determine individual linear responses using the superposition theorem
- Are able to obtain Thevenin?s and/or Norton?s equivalent circuit models for active, one port networks
- Are able to identify and apply the most appropriate circuit analysis techniques and/or theorems for specific types of circuits
- Analyze and determine the complete response of RL, RC and RLC circuits
- Are able to identify the frequency, amplitude, and phase of a sinusoidal voltage or current.
Expected acquired core competences
- Circuit analysis
- Energy storage
- Frequency Response
- The Laplace Transform
- Fourier Series and Fourier Transform
Textbook
Reference material
Required computer resources
No special needs.
Evaluation
- In-class participation 1 point for each individual contribution in the lab class but not more than 10 points in total,
- in-class tests up to 15 points (for each test),
- mid-term exam up to 40 points
- final examination up to 50 points.